Journal of the Korean Chemical Society 1997, Vol. 41, No. I Printed in the Republic of Korean

양극분극에 의한 흑연전극의 계면반응에 대한 연구

吳輪俊*·金仁其¹·李鍾禮·李煐勛

'한서대학교 재료공학과 한서대학교 화학과 (1996. 7. 23 접수)

Study on the Surface Reactions of Graphite Electrodes by Anodic Polarization

Han Jun Oh*, In Ki Kim[†], Jong Ho Lee, and Young Hoon Lee

[†]Department of Material Science, Hanseo University, Seosan 352-820, Korea Department of Chemistry, Hanseo University, Seosan 352-820, Korea (Received July 23, 1996)

요 약. 0.5 M K₂SO₄ 용액에서 여러 가지 세 탄소전극(glassy carbon, 인조흑연, graphite foil)에 대하여 양 극분극에 따른 전극표면반응에 대한 연구를 임피던스 스펙트로스코피를 통하여 실시했다. Graphite foil 전극 의 경우 이중층 capacitance는 다른 두 전극재료에 비하여 높게 나타났으며, 양국분국시 glassy carbon과 인조 흑연(PVDF 혼합 graphite)은 전극계면에서 흡착현상에 의한 capacitance C의 영향이 현저하게 나타남을 알 수 있었다. 3종류 전극재료의 전기화학적 거동은 전극표면 조직의 차이에 의해 glassy carbon의 경우는 분극시 과 라데이 입피던스의 영향을 받으며, graphite foil의 경우는 field transport의 지배를 받아 전압의 변화에 의한 입 피던스 파라미터의 변화는 거의 나타나지 않았다.

ABSTRACT. Electrode surface reaction on three carbon materials (glassy carbon, synthesized graphite, graphite foil) in 0.5 M K₂SO₄ electrolyte is investigated by impedance spectroscopy during anodic polarization. The double layer capacitance of the graphite foil electrode is relatively higher than that of other two materials. The change of capacitance parameter C due to chemical adsorption on glassy carbon and synthesized graphite (PVDF graphite) is obsorved in 0.5 M K₂SO₄ solution at anodic polarization. In general, the faradic impedance on glassy carbon depends on anodic polarization, and the change of impedance parameter on graphite foil at anodic polarization is not remarkable, because this reaction is controlled by field transport.

서 톤

일반적으로 탄소 또는 흑연재료는, 비교적 높은 전기전도도와 여러 종류의 전해질에 대하여 내부식 성이 우수하며 가격이 저렴하기 때문에 전극재료로 서 가장 많이 사용되고 있으며, 또한 이들 재료는 전 기화학에서 이용될수 있는 내부조직의 변화와 전극 으로 사용되고 있는 형태(고체, 분말, fiber, foil)가 다 양하게 존재하기 때문에 아주 광범위하게 전기화학 적으로의 적응이 기대되고 있는 전극재료이다. 특히 양극으로서의 넓은 사용범위 때문에 백금, 금 등의 귀금속과 더불어 전기화학을 연구하기 위한 중요한 작업전극(working electrode)으로서 많이 이용되고 있을 뿐만 아니라, 전기화학 분석과 전기화학적 활 성(active) 재료의 conductive support로서 이용되어져 왔다. 이러한 전기화학분석 측정시 나타나는 전기화 학적 파라미터들은 작업전국의 재료특성에 의해 영 향을 받으며, 특히 탄소재료의 경우 전해질과 전압 에 의하여 전극계면에 표면 작용기(surface functional group)의 피막층이나 화학흡착현상 등의 다양 한 표면반응이 진행되기 때문에 전국재료로서 다양 한 분야에서 적절하게 활용하기 위해서는 전국계면 의 표면특성 변화들에 대한 정확한 연구가 선행되어 야 한다. 특히 이러한 탄소재료의 중류에 따른 다양 한 계면구조의 형태는 전기화학적 kinetics에 큰 영 향을 미치므로 전극재료의 정확한 특성을 파악하기 위해서는 이러한 변화에 대한 완전한 이해가 선행되 어야 적절한 전극재료로서 사용할 수 있다.

따라서 본 연구는 전기분석등의 적용을 위한 적절 한 탄소재료의 선택을 목적으로 다양한 탄소재료의 형태와 그에 따른 표면반응의 변화를 임피던스 스펙 트로스코피를 통하여 조사하였으며, 특히 중성전해 질에서 양극전압을 전극에 부하할 경우 탄소와 흑연 전국에서 일어나는 표면반응의 변화에 대하여 조사 툴 하였다.

실 혐

전해액 및 전극재료, 본 실험에 사용된 탄소 또 는 흑연 전극재료로는 불완전한 흑연 층간구조를 갖 는 glassy carbon과 fluor polymer가 흑연재료에 fluor binder로 첨가되어 표면에 기공이 존재하지 않는 인조흑연(PVDF 합성 흑연), 그리고 흑연의 C축이 거대팽창된 조직을 갖는 graphite foil 등 모두 3가지 전국재료로서, 모두 독일의 Sigri사에서 제조한 것을 사용하였으며 이것을 직경 32mm의 원판모양으로 작업전극를 제작하였고, 측정을 위한 시편의 기하학 적 표면적은 2 cm²이며 최종적으로 Emery paper #1200까지 연마 탈지 후 시편으로 사용하였다. 또한 탄소전극들의 양극분극시의 반응을 실험하기 위해 사용된 전해액 으로는 0.5 M K₂SO, 용액을 사용하였 으며, 사용된 전해액은 모두 탈이온수를 이용하고 산소를 제거한 전해액을 제조하였다. 이때 사용된 시약은 Merck제(GR grade, Germany)를 사용하였다. 기준전국. 기준전국으로서 Hg/Hg2SO4 전국을 이 용하였으며 측정시의 확산 전위차를 방지하기 위하

여 Hg/Hg2SO4 기준전국의 용액은 측정조와 동일한

전해액을 사용하였다. 이때 상대전극(counter electrode)으로는 표면적 9 cm²의 백금흑관을 이용했으며 시험전에 진한 황산용액에서 세척한 후 사용하였다.[!]

Potentiodynamic 전류-전압 곡선. 본 실험에서 측정된 변전위(potentio-dynamic) 전류-전압 곡선은 25℃의 0.5 M K₂SO, 용액에서 3종류의 탄소재료에 대해 측정하였으며 측정을 위한 전압 주사속도는 *dE/dt=6* mVs⁻¹이며 기하학적 전극의 표면적은 2 cm² 이며 측정기는 IM5d(Zahner-Elektrik, Kronach)를 사 용하였다.

본 연구에서는 BODE-Diagram을 이용하여 임피던 스 스펙트럼을 해석하고 전기 화학적 파라미터와 거 동에 대하여 조사했다. 또한 본 실험에서 임피던스 의 측정과 측정된 임피먼스의 평가를 위하여 임피던 스 측정기인 IM5d(Zahner-Elektrik, Kronach)를 이용 하였으며, 본 실험에 사용된 주파수 범위는 10 mHz-100 kHz이며, 또한 측정에 사용된 전극조(3-electrode cell)는 넓은 주파수 범위에서 임피던스에 적당 한 조건²들을 고려하여 제작된 3전극계에서 모든 측 정이 이루어졌다.

임피던스 스펙트럼의 평가. 작업전극 계면에서 발생되는 전기화학적 현상과 임피던스를 결정하는 반응 과정은 등가회로모델를 이용하여 설명될 수 있 다. 전극표면에서 일어나는 반응과 일치하는 적합한 등가회로모델을 사용하여 임피던스의 주파수 의존 성을 평가할 경우, 이것이 이상적인 모델일 경우 임 피던스 엘리먼트를 적절한 수치로 했을 경우 전극에 서 측정된 임피던스 스펙트럼과 평가에서 나타난 임 피던스 스펙트럼은 일치하게 된다. 본 실험에서는 임피던스의 평가를 위해 Göhr³⁴가 개발한 프로그램 을 이용하였으며, 임피던스 스펙트럼의 평가시 사용

Table 1. Applied impedance element, parameter and frequency dependence of impedance for evaluation of measured impedance spectrum (angular frequency $\omega = 2\pi f$, imaginary unit i: $i^2 = -1$)

Element	Symbol	Parameter	Impedance	Phase angle
Resistance		R	R	0°
Capacitance	$\dashv\vdash$	С	$\frac{1}{i\omega C}$	- 90°
Warburg-Impedance	W	W	W √i∞	- 45°
Loss-Capacitance	-\/	С, р	$\frac{1}{\omega_0(i\omega'\omega_0)^{1-p}C}$	$-90^{\circ}(1-p)$

Fig. 1. Cyclic voltammograms on glassy carbon electrode in 0.5M K₂SO₄ solution at a sweep rate 6 mVs^{-1} .

된 임피던스 엘리먼트는 Table 1에 나타내었다.

결과 및 고찰

Potentiodynamic 전류-전압곡선

3가지 종류의 탄소와 인조흑연재료의 계면에서 측 정된 변전위 전류-전압곡선을 Fig.1에 나타내었다. Fig. 1에 의하면 glassy carbon의 경우는 다른 탄소재 료에 비해 수소와 산소가 발생되는 전압사이가 가장 넓게 나타났으며 또한 양극분극이 부하된 후 -1800 mV까지 전압이 하강하는 동안에 두개의 환원 피크 가 200 mV와 -1100 mV에서 나타났다. 이 환원피 크들은 Dunsch^{5,6} 등에 의하면 산소가 환원되거나, 또는 전극표면에서 양극분극시에 생성된 화학종들 이 환원에 의해 농도가 감소하기 때문에 발생된다고 하였다. Fig. 2의 PVDF 흑연의 경우는 전압 중가시 300 mV 근처에서 아주약한 양극전류 피크가 나타나 며 1250mV 근처에서는 높은 전류피크가 나타났으 며, 계속하여 전압이 낮아질 경우 -250 mV 전압 범 위에서 음극 전류 피크가 나타났다. 이러한 현상은 전극표면에서 표면 산화물들의 산화와 환원에 의해 발생된 것으로 사려된다. 이러한 표면 산화물들은 수용성 전해질에서의 탄소 혹은 흑연전극의 특성에 영향을 미친다. 또한 분극과 화학흡착 현상은 흑연 표면에서 표면작용기(surface functional group)의 형 성에 영향을 주어 전기화학적 거동의 변화를 유발시 킨다. 이러한 group들은 Kinoshita, Panzer 그리고 Elving²⁻¹⁰에 의해 잘 연구되었다. 이와 같이 수용액 중의 탄소와 흑연전극의 계면에서 생성될 수 있는

1997, Vol. 41, No. 1

Fig. 2. Cyclic voltammograms on PVDF mixed graphite electrode in 0.5M K₂SO₄ solution at a sweep rate 6 mVs^{-1} .

Fig. 3. Cyclic voltammograms on graphite foil in 0.5M K_2SO_4 solution at a sweep rate 6 mVs⁻¹.

표면산화물은 다양한 형태의 표면작용기로 존재하 며 그 종류로는 carboxyls,¹¹⁻¹³ quinones/hydroquinones,¹⁴⁻¹⁹ phenol,²⁰⁻²¹ peroxides,²² aldehydes,²³ ethers,²³ esters,²³ normal lactones,²³ 그리고 f-lactones²³으로 나 타난다(탄소나 흑연재의 경우, 흔히 사용되는 용어 중 화학흡착되는 산소, 산소가 함유된 피막, 산소함 유 표면작용기, 표면 산화물등의 표현은 모두 같은 의미를 갖는 동의어로 사용된다). 또한 cyclic voltammetric curve에서 알 수 있듯이 표면산화물에 의 한 전극표면의 변화는 임피던스 스펙트럼에서도 그 의 영향이 나타날 것으로 예상할 수 있으며, graphite foil의 변전위 전류-전압 곡선의 경우는 Fig. 3을 통하여 이 전극의 표면에서 비교적 높은 이중층 capacitance가 나타날 것으로 예상된다.

통가희루모델의 파라미터

Faraday-입피던스. 임피던스 스펙트럼의 평가를 위해 사용되는 등가회로 모델에서 나타나는 파라데 이 임피던스는 주로 전하이동반응과 관련된 항으로 전국 개면 반응에 의하여 파라미터들의 종류와 배열 방법이 여러 형태로 나타날 수 있다. 이때 나타나는 파라미터들은 전하이동전류 *I*₀와 관련이 되며 Faraday법칙에 따른 전기화학적변화의 속도와 일치한다. 전하이동반응의 속도와 그것에 의한 전하이동전류 는 아래의 상태변수와 kinetic 파라미터에 의해 영향 을 받는다. 따라서 전하이동전류는 아래와 같이 표 현된다.

 $I_D = I_D(E, c, \Theta; k, z, \alpha)$ (1)

Variable

E: 퍼탠셜 c: 상경계에서 반응 참가물의 농도 Θ: 흡착층에서 흡착된 반응참가물의 덮임률 Kinetic Parameter k: 속도상수 z: 전하수 α: 전하이동상수

만약 안정 또는 준안정상태에서 퍼텐셜 E를 주파수 /의 주기함수로써 부하한다면 (1)에 의해 다음과 같 이 쓸 수 있다

$$\vec{\eta} = \hat{\eta} \exp(i\omega t), \, \omega = 2\pi f$$
 (2)

이러한 부하 신호에 대해 전극표면의 반응으로 *I_b, c,* Θ , *k*의 동등한 주기적인 편차가 나타나게 된다. Charge transfer 전류의 경우 아래식과 같이 나타난다.

 $\tilde{I} = \hat{I} \exp(-i\phi) \exp(i\omega t) = f_I(\omega)\tilde{\eta}$ (3)

여기에서 특성함수 ƒ(ω)는 "Faraday-Admittance"와 같으며 Faraday-Impedance의 역수값과 같다. 준안정 상태에서 각속도 ω, 진폭 â를 갖는 주기요소 â를 포함하는 a의 크기는 다음과 같다.

 $\tilde{a} = \hat{a} \exp(-i\phi_a) \exp(i\omega t)$ (4)

이것으로부터 시간 /와 전하이동 전류 1_b에 의존 하 는 변수 c와 0는 다음과 같고

$$\tilde{c} = \hat{c} \exp(-i\phi_a) \exp(i\omega t) = -f_c(\omega)\bar{I}_D \qquad (5)$$

$$\Theta = \Theta \exp(-i\phi_{\Theta}) \exp(i\omega t) = -f_{\Theta}(\omega)\hat{I}_D \qquad (6)$$

퍼텐셜에 의한 과전압 n에 의존하는 속도상수는 아 래와 같다.

$$\tilde{k} = \hat{k} \exp(-i\phi_k) \exp(i\omega t) = f_k(\omega) \tilde{\eta}$$
 (7)

전하이동 전류의 주기성 요소들에 대해 식 (1)의 전 개를 통해 아래와 같이 나타낼 수 있다.

$$I_D = \frac{\partial I_D}{\partial E} + \frac{\partial I_D}{\partial k} k + \frac{\partial I_D}{\partial c} \tilde{c} + \frac{\partial I_D}{\partial \Theta} \Theta \qquad (8)$$

여기서 k는 비례상수이므로 식 (9)과 같이 쓸 수 있으며,

$$\frac{\partial I_D}{\partial k} = \frac{I_D}{k} \tag{9}$$

Faraday-임피던스는 식 (2)로부터 주기적변화 식 (5) 부터 (7)까지의 치환을 통해 식 (10)이 된다.

$$Z_F = \frac{1 + \frac{\partial I_D}{\partial c} f_c + \frac{\partial I_D}{\partial} f_{\theta}}{\frac{\partial I_D}{\partial E} + \frac{\partial I_D}{\partial k} f}$$
(10)

분모의 첫번째항은 전류전압곡선 *I_b(E)*의 기울기이 며 전하이동저항 *R_b*의 역수가 되어 식 (11)과 같고, 분모의 두번째항은 *k*의 전압의존성으로 표시되며 완 화임피던스(Relaxation impedance) 乙로 불려지는항 ((12)식)으로 된다.²⁴

$$R_D^{-1} = \frac{\partial I_D}{\partial E} \tag{11}$$

$$Z_k = \frac{k}{I_D f_k} \tag{12}$$

분자의 두 항은 화학종의 계면농도 임피던스 Z,와 흡착에 의한 덮임 임피던스¹²6(이며 아래식으로 표 현된다.

$$Z_c = \frac{\partial I_D}{\partial c} f_c R_D \tag{13}$$

$$Z_{\Theta} = \frac{\partial I_D}{\partial \Theta} f_{\Theta} R_D \tag{14}$$

Faraday-임피던스는 식 (11)부터 (14)까지의 치환을 통해 식 (11)부터 (14)까지 나타난 4가지 임피던스 엘리먼트를 연결시켜 다음과 같이 나타낼 수 있다.

$$Z_{F} = \frac{1 + (Z_{c} + Z_{\theta})/R_{D}}{1/R_{D} + 1/Z_{k}} = \frac{R_{D} + Z_{c} + Z_{\theta}}{1 + R_{D}/Z_{k}}$$
(15)

1/Z_k항은 I_D=0 또는 k가 전압에 의존하지 않을 경우 사라진다(즉 f_i=0).

따라서 전극계면 반응시 나타나는 파라데이 임피 던스는 실제적인 전기 화학적 반응에 의하여 식 (15) 의 엘리먼트들이 등가회로 모델로 표현되며, 전극 경계면의 반응에 따라 이러한 Faraday 엘리먼트들이 직렬 또는 병렬로 배열되거나 혹은 다소 복잡한 형 태의 등가회로로서 나타낸다.

양극분극시 탄소재료들의 전기화학적 거등

양국분국시 glassy carbon 계면의 전기화학적 거 통, 526 mV부터 656 mV까지의 양국 전압범위 구 간의 0.5 M K₂SO₄ 용액내에서 glassy carbon의 표면 에서 나타나는 임피던스의 변화를 측정하고 이것에 대한 BODE-Diagram을 *Fig.* 4에 나타냈다. *Fig.* 4에 서 phase angle에 대한 곡선에서는 약 600 mV까지의 양국부하시 양국부하전압의 상승과 더불어 위상곡 선의 경우는 낮은 주파수 영역(10 mHz~2 Hz)에서 임

Fig. 4. Impedance spectrum on glassy carbon in 0.5M K₂-SO₄ solution at anodic polarization(curve No. potential, current in *Table 2*).

퍼던스량이 계속적으로 감소된다. 양극전압이 계속 해서 더 부하될 경우(605 mV에서 656 mV까지) 두 종류곡선의 형태는 급격하게 변하게 된다. 위상곡선 의 최대적은 다시 위로 상승하며 최소점은 점차 소 멸된다. 이때 임피던스량에 대한 곡선도 낮은 주파 수 영역(10 mHz~2 Hz)에서 다시 중가하며 임피던스 곡선의 기울기는 완만해진다. 이같은 낮은 주파수 영역에서의 거동은 저항에 의해 결정된다. 이러한 glassy carbon 전극의 계면에서 측정된 임피던스 스 페트럼의 평가를 위하여 사용된 등가회로를 Fig. 5에 나타냈다. 이 등가회로에 의하면 glassy carbon 전극 반응의 평가를 위해 사용된 Faraday-임피던스는 capacitance C1과 C2, 저항 R1과 Warburg-임피던스 W1으 로 구성되어 있으며, 여기서 Ri은 전국계면에서의 전 하이동 또는 polarization 저항을 나타내며, Ci은 탄소 전극과 표면산화층의 접촉면과 관련된 capacitance이 며, Warburg-임피던스 Wi은 탄소전극 계면에서 반응 에 참여하는 화학종의 농도저항이 Faraday-임피던스 에 기여하는 경우 아래의 형태로 사용된다.

$$Z_{W} = W(i\omega)^{-1/2} = W(2\omega)^{-1/2}(1-i)$$
(16)

여기에 흡착 capacitance C₂가 직렬로 연결되어 파라 데이 임피던스를 구성하고 있으며 이 파라데이 임피 던스와 평형하게 표면피막층 또는 전기적 이중층 capacitance가 연결되며 전해질 저항 R_E가 이들과 연 결된다. 이때 나타나는 이중층 capacitance의 파라미 터로서 glassy carbon의 경우 뿐 아니라 나머지 전극 재료의 모든 경우(Fig. 9, 11) loss capacitance(C, p)가 사용되었다. 이 파라미터는 이상적인 capacitor로부 터 거동 편차를 포함하는 전기적 이중층 용량을 나 타내며 이러한 loss capacity의 임피던스는 아래의 관

Fig. 5. Model for evaluation of the spectra on glassy carbon at anodic polarization.

1997, Vol. 41, No. 1

Table 2. Evaluated impedance parameter according to Fig. 5 for a spectrum of glassy carbon at anodic polarisation in 0. 5M K₂SO₄ at 24°C. Potentiostatic controlled potential E vs. Hg/Hg₂SO₄ in same electrolyte, anodic current I at start measurement of the spectrum, mean deviation of phase angle $\Delta \phi$, time t since start of measurement(measure duration for one spectra: 13~15 min)

		/									
No.	t h	E mV	<i>1</i> цА	<i>R</i> , Ω	C ₁ uF	W_1 $\Omega s^{-1/2}$	C ₂ mF	C uF	Р %	R _ε Ω	<u>Δ</u> φ
		14.1						<i></i>	10		
1	0.0	526	- 0.01	2710	37.0	1460	4.55	228	9.23	5.76	0.51
2	0.5	536	- 0.33	1820	32.1	1230	5.50	221	9.23	5.75	0.47
3	1.0	545	-0.20	1200	32.4	894	5.78	212	9.33	5.75	0.48
4	1.5	555	-0.02	651	48.7	732	7.59	203	8.77	5.73	0.43
5	2.0	566	0.19	423	57.0	542	8.38	191	8.54	5.69	0.44
6	2.5	575	0.40	283	72.8	435	10.20	179	7.72	5.68	0.51
7	3.0	585	0.75	204	87.8	336	11.90	170	7.21	5.67	0.52
8	3.5	595	0.87	169	97.7	293	15.80	160	6.50	5.67	0.64
9	4.0	605	1.01	162	104.0	265	23.50	151	5.97	5.67	0.67
10	4.5	615	1.30	199	97.0	248	46.70	144	6.08	5.67	0.53
11	5.0	626	1.54	356	•	244	-	194	5.95	5.73	0.78
12	5.5	636	1.81	801		187	-	184	6.91	5.74	0.62
13	6.0	645	2.18	1620	-	214	-	179	7.00	5.72	0.84
14	6.5	656	1.97	3360	-	597	-	175	6.85	5.73	0.85

계식으로 표현된다.25,26

 $Z_V = (i \, 2\pi f C)^{-1} (i f / f_0)^p \tag{17}$

이 식은 임의로 선택된(본 실험에서는 fo=1 kHz) 천 이주파수 fi를 포함하며, 임의의 측정 주파수가 f=fa 일 경우의 loss capacitance는 loss angle을 전혀 포함 하지 않는 이상적인 capacitance와 정확히 일치된다. 여기서 나타난 loss angle은 그 값이 적을수록 이상 적 축전기의 표면조건과 일치되어진다. 즉 여기서 p 값이 5.95%와 9.33%의 값을 갖는 glassy carbon의 경우(Table 2)는 α=p 90°을 통하여 loss angle이 5.4~ 8.4°로 나 타난다. Table 2는 Fig. 5의 등가회로를 통 하여 평가된 임피던스 파라미터들을 나타냈다. 이러 한 파라미터들 중에서 특히 계면반응에 중요한 영향 을 미치는 파라미터들에 대한 전압의존성을 Fig.6, 7에 나타냈다. 이러한 Fig. 6, 7로부터 양극분극에 대 한 glassy carbon 계면반응은 대체적으로 3단계 즉 약한 양극분극, 강한 양극분극, 그리고 그 사이의 전 이부분으로 나타낼 수 있었다. Fig. 6에서 약한 양극 분극의 경우(526 mV부터 610 mV 전압범위)에서는 분극의 증가와 더불어 전하이동 저항 R,는 10배 이 상이 감소했으며(2710 Ω에서 162 Ω까지), 표면 피막 층과 관련된 loss capacitance C(이때 C=εA/δ이며, δ 는 피막층의 두께, A는 표면적, ε은 유전상수 ε=ε,,·

Fig. 6. Potential dependent of impedance parameters on glassy carbon electrode in 0.5M K₂SO₄ solution at 25°C (Charge transfer resistance R_1 in left axis and capacitance C in right axis are relative to surface layer).

ε,이다)는 계속적으로 감소했다. 이때 나타나는 흡착 capacity C₂의 높은 상승(Fig. 7)은 전국 계면에서의 화학흡착(chemical adsorption) 현상이 나타나는 것을 의미한다. 이 현상을 통하여 약한 양국전압이 부하 될 경우 glassy carbon의 표면에 전하이동을 통하여 자체촉매반응(autocatalysis)적으로 비교적 전도도가 양호한 표면 산화층이 형성된다는 것을 알 수 있다. 동시에 나타나는 Warburg 임피던스 W₁의 강한 감소 는 전국 표면에서 전하이동에 참여하는 화학종들의

Fig. 7. Potential dependent of impedance parameters on glassy carbon electrode in 0.5M K₂SO₄ solution at 25°C (Capacitance C_2 in left axis is relative to chemical adsorption, W_1 in right axis is relative to concentration impedance of chemicl species).

농도 중가에 의하여 나타난다. 이러한 양극분극시의 화학흡착은 전극표면에 친수성피막의 생성과 성장⁴⁷ 에 기여하는 것으로 사려된다.

또한 626 mV부터 656 mV까지의 강한 양극분극시 의 임피던스 스펙트럼에서는 Fig. 6에서 나타나듯이 이때 전하이동 저항 R,는 분극 증가와 더불어 356 Ω에서 3360 Ω까지 증가하고, loss capacitance C는 이 전압 범위에서 194에서 175µF로 감소했다. 이 현상은 약 600 mV 이상의 전압에서 전극표면에 양 극적으로 전도도가 양호하지 않는 피막층이나 화학 흡착층이 형성되기 때문인 것으로 생각된다. 이때 이러한 피막과 관련이 있는 loss capacitance C는 일 반적으로 감소하며 전하이동 저항 R 은 이러한 표면 층이 생성될수록 상승하게 된다. 계속된 분극증가에 따라 620 mV의 양국전압에서 전극표면의 상태는 급 격한 변화를 나타냈다. 분극 증가와 더불어 전하이 동 저항 Ri이 다시 상승했고 capacitance C는 서서히 감소했다. 여러한 현상으로부터 약 620 mV 전압에 서는 이미 형성되었던 전기전도성이 양호한 표면피 막층이 부분적으로 용해되며 표면에 소수성이 증가 하기 시작하는 것을 알 수 있다. 이러한 전극표면 경 계에서의 전극반용은 이러한 소수성에 의하여 억제 되어진다."

한편으로는 부하된 전체 전압범위를 통하여 측정 된 이중층 capacitance는 그 값은 크지 않으나 144~ 228μF 사이의 변화를 나타내었다. 이러한 이중층 capacitance가 크지 않은 이유는 glassy carbon의 조

Fig. 8. Impedance spectrum on PVDF mixed graphite in 0.5M K₂SO₄ solution at anodic polarization(curve No., potential, current in *Table 3*).

밀한 표면조직 때문이며 그 값이 큰 변화를 나타내 는 원인은 분극에 의해 전극표면상에서 산화 피막 (표면작용기)의 변화가 현저하기 때문이며 이때 표 면에 흡착된 표면작용기(surface funtional group)들이 그들의 산화상태나 이온상태의 변화^{28,29}를 통하여 capacitance의 변화에 영향을 주기 때문이다.

PVDF 합성 흑연의 양국분극. 0.5 M K₂SO₄ 용액 에서 306 mV에서 445 mV의 전압범위에서 양극분극 부하시에 생기는 PVDF 합성 흑연 표면의 임피던스 곡선의 변화를 측정하고 측정된 임피던스 곡선들을 *Fig.* 8에 나타냈다. 이 *Fig.* 8에서 phase angle 곡선의 경우 약 5 Hz의 주파수 범위에서 최대점이, 약 200 mHz 범위에서 최소점이 나타나며, 주파수 범위 10 mHz부터 약 100 Hz까지 (loss-)capacity의 영향이 나 타났다. 그러나 전압의 변화에 따른 스펙트럼의 변 화는 현저하지 않았다. 이러한 스펙트럼의 평가를 위해 *Fig.* 9의 등가회로 모델를 이용했다. 이둥가회 로는 Faraday 임피던스로서 전하 이동저항 *R*₁과 Warburg-임피던스 *W*₁ 그리고 흡착 capacitance *C*₂가 모두 직렬로 연결되었고 이것과 평행하게 이중층 capacitance가 연결되었다. 이 등가회로 모델을 이용 하여 평가된 임패던스 파라미터들을 Table 3에 나타 냈으며, 이결과에서 PVDF 인조흑연의 경우는 흡착 현상에 의해 발생되는 capacitance C₁의 영향이 나타 났지만, glassy carbon 전극의 경우처럼 분극에 의한 흡착현상의 큰 변화는 나타나지 않았다. 다른 임피 던스 파라미터들 역시 전압분극에 대해 큰 변화를 나타내지 않고 20% 이상 변화되지 않았다. 또한 이 중층 capacitance는 graphite foil의 경우에 비해 비교 적 적으며 (181~194μF) 이것은 전극표면의 조직이 graphite foil에 비해 조밀하기 때문인 것으로 생각된 다. 즉 PVDF 인조흑연의 경우는 소수성 결합제(hydrophobic binder)가 전극표면에 미세하고 균일하게 존재하여 기공에 전해액이 침투되는 것을 막아주기

Fig. 9. Model for evaluation of the spectra on PVDF gra-

phite at anodic polarization.

때문인 것으로 사려된다. 본 실험 결과에서 glassy carbon과 PVDF 흔합 흑연의 계면반응에서는 흡착현 상에 의한 흡착 capacitance가 나타났다. 이러한 흡착 capacitance에 대한 의미는 아래와 같이 설명된다.

흡착 capacitance. 화학반응 진행시 화학종 S의 입자(이온, 분자)가 전해질에서 전극의 경계면에 흡 착될 경우, 이때 흡착된 입자들과 전극표면의 원자 들 사이에서는 물리적 결합(van der Waals, 정전기적 인력)이 존재하지 않고 화학적 결합에 의한 전기화 학적 흡착이 일어날 경우 상 경계³⁰를 통한 전하의 이동으로써 계산될 수 있다. 모든 potential E값에 대 하여 흡착등운식(adsorption isotherm)에 해당되는 덮 임률(coverage rate)의 평형값 Θ,=Θ(Er)이 존재하며 이때 흡착속도는 소멸된다. 교류전압요소 E가 부하 될 경우 평형값에 대하여, Θ는 주기적으로 변하고 이때 전하이동 때문에 교류전류가 발생된다. 이 흡 착이 아무 저항도 받지 않고 이루어진다면, 전압의 변화에 따라, 전류 I_{ad}는 Θ,의 평형값 변화에 대하여 비례하여 나타난다.

$$I_{ad} = A \left(\partial q / \partial \Theta \right)_{\mathcal{E}} \left(d \Theta / dt \right)$$
(18)

q는 전극의 전하, θ는 덮임률, A는 전극표면적이다. 아주 적은 전압 E의 변화에 대해 θ,은 직선적으로

Table 3. Evaluated impedance parameter according to Fig. 9 for a spectrum of PVDF graphite at anodic polarisation in 0.5M K₂SO₄ at 24°C. Potentiostatic controlled potential E vs. Hg/Hg₂SO₄ in same electrolyte, anodic current I at start measurement of the spectrum, mean deviation of phase angle $\Delta \phi$, time t since start of measurement(measure duration

for one spectra: 13-15 min)									
No.	t h	E mV	R ₁ kΩ	₩ ₁ kΩs ^{-1/2}	C ₁ mF	С µF	Р %	R_{ε} Ω	Δ φ °
1	0.0	306	1.00	1.70	1.72	194	11.8	6.09	0.24
2	0.5	316	1.07	1.69	1.45	192	11.9	6.07	0.19
3	1.0	326	1.08	1.68	1.38	191	11.9	6.08	0.25
4	1.5	35	1.13	1.64	1.30	189	11.9	6.08	0.24
5	2.0	345	1.11	1.68	1.29	188	11.9	6.09	0.24
6	2.5	356	1.13	1.67	1.27	187	11.9	6.10	0.25
7	3.0	366	1.11	1.69	1.27	187	11.8	6.11	0.32
8	3.5	375	1.06	1.80	1.35	186	11.8	6.11	0.22
9	4.0	386	1.08	1.72	1.28	185	11.7	6.13	0.24
10	4.5	396	1.08	1.75	1.30	184	11.7	6.12	0.19
11	5.0	406	1.04	1.80	1.34	184	11.7	6.13	0.17
12	5.5	416	1.07	1.77	1.30	183	11.7	6.14	0.22
13	6.0	426	1.04	1.81	1.34	182	11.6	6.15	0.17
14	6.5	436	1.08	1.77	1.30	181	11.7	6.16	0.21
15	7.0	445	1.06	1.81	1.32	18 1	11.7	6.16	0.19

Fig. 10. Impedance spectrum on graphite foil in 0.5M K₂-SO₄ solution at anodic polarization(curve No., potential, current in *Table* 4).

E에 의존되기 때문에, 이것은 adsorption capacitance C_{ad}의 하전과 일치된다.

$$C_{ad} = A \left(\partial q / \partial \Theta \right)_{\mathcal{E}} \left(\partial \Theta \partial E \right)_{\hat{c}}$$
(19)

ĉ 는 상 경계로 흡착된 입자의 농도이며 이때 흡착저 항이 작용할 경우, Θ가 지연되며 형성된다. 이때 등 가회로상 에서는 이것이 C_{as}와 직렬로 연결된다.

덮임률의 시간적인 변화 d⊖/dt는 adsorption kinetic에 의존되며 이때 흡착반응 외에도 전해질에서 흡 착되는 화학종의 확산반응이 중요한 역할을 할 수도 있다. Sine 형태의 교류 전류가 호를 때 adsorption kinetic에 대해서는 Frumkin과 Melik-Gaikazjan³¹ 등 에 의해 연구되었으며 확산에 의해 지배되는 흡착반 응과, 흡착단계가 억제되는 두 가지 경우로 구별된 다. 첫번째로 확산지배되는 흡착반응의 경우는 흡착 에 대한 저항이 무시될 수 있다면 전기화학적 흡착 반응에 대한 흡착중의 transport가 속도결정단계가 된 다. 이 경우는 등가회로상에서 확산 임과던스(Zw)와 흡착 capacitance(C_{ad})의 지렬연결로써 표현³²⁻³⁴된다.

두번째로 흡착단계가 억제되어질 경우, 확산과정

1997, Vol. 41, No. 1

Fig. 11. Model for evaluation of the spectra on graphite foil at anodic polrization.

이 억제되어지지 않는다면 전기화학적 흡착반응의 속도는 흡착반응에 의해 조절되어진다. 이때는 전하 이동 저항이 있는 경우와 같이 흡착반응의 저항은 R_{ad} 와 C_{ad} 의 직렬로 표현될 수 있다. 이때 R_{ad} 와 C_{ad} 의 kinetic의 의미는 한편으로는 흡착되어진 입자들 사이의 교류작용을 통해 영향을 받는 흡착이론에 의 존되며, 아주 간단한 System에 대해 흡착이론식을 통해 R_{ad} 와 C_{ad} 가 아래와 같이 유도된다.

$$R_{ad} = RT/2FI_o \tag{20}$$

 $C_{ad} = \frac{z^2 F^2}{RT} \frac{A \Gamma_s}{\mathcal{V}\Theta + \mathcal{V}(1 - \Theta) + 2\Theta B \exp(B(\Theta 2 - 1/4))}$

여기서 Γ.는 전국 표면 A가 완전히 화학종에 의해 피복되었을 경우의 부분농도로서 Mol/cm²이다.

Graphite-foil의 양국분극. Graphite foil 전극을 316 mV부터 456 mV의 전압범위에서 양극분극을 부 하하였을 경우 전극표면에서 변화하는 임피던스 스 팩트럼를 측정하고 그 결과를 Fig. 10에 나타냈다. 이 그림에서 임피던스의 변화는 양극분극의 정도와 관계없이 크게 변하지 않았다. 이러한 graphite foil 계면에서 나타나는 임피던스 스펙트럼의 평가를 위 한 등가회로는 Fig. 11의 모델을 이용하였다. 이 등 가회로는 아주 단순하며 전하이동 저항 R_i과 Warburg-임피던스 W_i으로 구성된 Faraday-임피던스와 이중층 capacitance가 평형하게 연결되어 전해질 저 항 RE와 연결되었다. 이 등가회로를 통하여 임피던 스 파라미터들을 평가하고 이렇게 구해진 파라미터 는 Table 4에 나타냈다.

그러나 임피던스 스펙트럼들을 통하여 알 수 있듯 이 이 임피던스 파라미터들은 양국분국 정도와 관계 없이 큰 변화는 없었다. 이 현상은 graphite-foil의 구 조와 밀접한 관계가 있음을 알 수 있다. 즉 graphite

Table 4. Evaluated impedance parameter according to Fig. 11 for a spectrum of graphite foil at anodic polarisation in 0.5M K₂SO₄ at 24°C. Potentiostatic controlled potential E vs. Hg/Hg₂SO₄ in same electrolyte, anodic current I at start measurement of the spectrum, mean deviation of phase angle $\Delta \phi$, time t since start of measurement(measure duration for one spectra: 13~15 min)

No.	t h	E mV	<i>1</i> µА	R ₁ Ω	W_1 $\Omega s^{-1/2}$	С µF	р %	R_E Ω	Δφ
1	0.0	316	2.81	15.2	225	258	30.2	5.84	0.23
2	0.5	325	3.41	12.8	214	263	29.2	5.85	0.21
3	1.0	335	4.06	9.4	201	262	28.1	5.85	0.19
4	1.5	345	4.00	11.2	206	263	28.5	5.85	0.26
5	2.0	356	4.29	11.0	205	260	28.7	5.85	0.29
6	2.5	366	4.69	9.0	198	257	28.1	5.84	0.17
7	3.0	376	4.62	10.8	207	254	29.1	5.84	0.32
8	3.5	385	4.82	7.8	192	252	27.8	5.85	0.16
9	4.0	395	5.23	7.0	190	249	27.6	5.85	0.16
10	4.5	406	5.43	6.2	185	246	27.2	5.85	0.15
11	5.0	416	5.37	8.7	196	248	28.4	5.87	0.27
12	5.5	426	5.85	7.0	190	241	28.1	5.87	0.27
13	6.0	436	6.02	5.8	183	240	27.3	5.89	0.14
14	6.5	445	5.88	5.7	182	239	27.3	5.88	0.14
15	7.0	456	6.36	6.1	184	238	27.7	5.89	0.16

foil 전극의 내부구조는 팽창조직(expanded structure) ^{35,36}이므로, 전해질과 접촉되는 전극계면은 내부적으 로 조밀하지 않는 조직을 갖게되며, 또한 많은 양의 전해질을 함유하므로 이 경우 용해되어 있는 이온들 은 field transport 반응의 영향을 받기 때문에 *Table* 4에서 임피던스의 파라미터들의 변화가 전압에 크게 의존되지 않는 것으로 나타난다. 또한 이상적 capacitor로부터 거동의 편차를 나타내는 loss factor p값 은 27.3%부터 30.2% 범위의 비교적 큰값을 나타내 었고 이때 α=p 90°을 통하여 loss angle이 25~27'로 나타난다. 이렇게 loss factor인 p값이 크게 나타나는 것은 graphite foil의 팽창조직에 의해 전극표면이 조 밀하지 않기 때문인 것과 일치된다. 또한 변전위 전 류 전압곡선(*Fig.* 3)에서 예상되듯 다른 두 전국에 비 하여 비교적 큰 capacitance가 나타났다

결 론

1. 전기적 이중층의 측정결과 glassy carbon과 PVDF인조흑연의 경우는 graphite foil에 비해 상대적 으로 낮은 capacity가 나타났으며 이는 이들 재료의 조직에 의한 표면효과에 의해 발생된다.

2. 양극분극시 glassy carbon과 PVDF 인조흑연 전 극에서는 흉착현상에 의한 capacity C의 영향이 나타 나나, 양극분극에 따른 C의 변화는 PVDF 인조흑연 의 경우 큰 변화가 나타나지 않았으며, glassy carbon의 경우는 표면작용기의 변화와 화학흡착의 영 향에 의해 파라미터의 변화가 현저하게 나타남을 알 수 있었다.

3. Glassy carbon 전극재료의 경우 양극분극에 의 해 전하이동 반응의 변화가 나타나나, graphite foil 재료는 전압변화에 따라 이온들이 field transport 반 응의 영향을 주로 받기 때문에 임피던스의 양이 적 게 나타나며 임피던스 엘리먼트의 파라미터들도 전 압에 크게 의존되지 않았다.

4. Graphite foil의 경우 양극분국에 따른 입피던스 엘리먼트의 변화는 거의 나타나지 않았으며, loss factor p의 값은 두 재료 모두 다른 재료에 비해 크게 나타났다. 이 현상은 전국의 상 경계가 많은 전해질 과 접촉하게되는 표면구조에 의해 발생된다.

인용문 현

- Robinson, A.; Stokes, R. H. Electrolyte Solutions; Batterworths, 1970; p 477.
- Goehr, H.; Mirnik, M.; Shiller, C.-A. J. Electroanal. Chem. 1984, 180, 273.
- 3. Goehr, H.; Meissner, W. Z. Phys. Chem. Neue

Folge 1974, 93, 217.

- 4. Goehr, H.; Schaller, J.; Schiller, C.-A. Electrochimi. Acta. 1993, 38, 1961.
- 5. Dunsch, L.; Naumann, R. Z. Chem. 1974, 14, 31.
- Laser, D.; Ariel, M. J. Electroanal. Chem. 1974, 52, 291.
- Kinoshita, K. Carbon electrochemical and physicochemical properties; John Willey & Sons: 1988; p 86.
- Panzer, R. E.; Elving, P. J. Electrochim. Acta. 1975, 20, 635.
- Kepley, L. J.; Bard, A. J. Anal. Chem. 1988, 60, 1459.
- Nakahara, M.; Nakahara, Y.; Katagiri, G. J. Mat. Sci. 1991, 26, 861.
- 11. Boehm, H. P. Adv. Catal. 1966, 16, 179.
- Boehm, H. P.; Diehl, E.; Heck, W.; Sappok, R. Angew. Chem. 1964, 76, 742.
- 13. Puri, B. R.; Bansal, R. C. Carbon 1964, 1, 451.
- 14. Ohkita, K.; Tubokawa, N. Carbon, 1972, 10, 631.
- 15. Blurton, K. F. Electrochim. Acta 1973, 18, 869.
- Laser, D.; Ariel, M. J. Electroanal. Chem. 1974, 52, 291.
- Epstein, B. D.; Dalle-Moll, E.; Mattson, J. S. Carbon 1971, 9, 609.
- Panzer, R. E.; Elving, P. J. Electrochim. Acta. 1975, 20, 635.
- Evans, J. F., Kuwana, T. Anal. Chem. 1977, 49, 1632.
- 20. Boehm, H. P. Angew. Chem. Int. Ed. 1966, 5, 533.
- 21. Rivin, D. Rubber Chem. Technol. 1963, 36, 729.

- Garten, V. A.; Eppinger, K. Aust. J. Chem. 1952, 12, 394.
- Mattson, J. S.; Mark, H. B. Activated Carbon; Marcel Dekker: New York, 1971.
- 24. Goehr, H.; Schiller, C. A. Z. Phys. Chem. NF 1986, 148, 105.
- Oh, H. J.; Lee, J. H.; Lee, Y. H.; Ko, Y. S. J. Kor. Chem. Soc. 1996, 40, 308.
- 26 Goehr, H.; Oh, H.-J.; Schiller, C.-A. GDCh-Monographie Band 2, 1995; 341.
- 27. Dunken, H. Z. Chem. 1990, 30, 345.
- Randin, J. P.; Yeager, E. J. Electrochem. Soc. 1971, 118, 711.
- Randin, J. P.; Yeager, E. J. Electroanal. Chem. 1972, 36, 257.
- Vetter, K. J.; Schultz, J. W. Ber. Bunsenges. Physik. Chem. 1972, 76, 920 and 1972, 76, 927.
- Frumkin, A.; Melik-Gaikazjan Ber. Akad. Wiss. UdSSR 1951, 77, 855.
- de Levie, R.; Pospisil, L. J. Electroanal. Chem. 1969, 22, 277.
- Lorenz, W.; M(oe)ckel Z. Electrochem. 1956, 60, 507.
- Lorenz, W.; M(oe)ckel Z. Electrochem. 1958, 62, 192.
- 35. v. Sturm, F. Nachr. Chem. Tech. Lab. 1987, 35, 915.
- Dresselhaus, M. S.; Dresselhaus, G.; Sugihara, K.; Spain, I. L.; G?ldberg, H. A.; Graphite Fibers and Filaments; Springer-Verlag: 1988; p 287.