Browse > Article
http://dx.doi.org/10.14478/ace.2013.24.5.489

Study of Lithium Ion Capacitors Using Carbonaceous Electrode Utilized for Anode in Lithium Ion Batteries  

Oh, Rye-Gyeong (Department of Chemistry, University of Ulsan)
Hong, Jung-Eui (Department of Chemistry, University of Ulsan)
Yang, Won-Geun (Department of Chemistry, University of Ulsan)
Ryu, Kwang-Sun (Department of Chemistry, University of Ulsan)
Publication Information
Applied Chemistry for Engineering / v.24, no.5, 2013 , pp. 489-493 More about this Journal
Abstract
The most common carbonaceous anode materials of lithium ion batteries (natural graphite, artificial graphite, hard carbon, and mesocarbon microbeads) were utilized as an electrode in lithium ion capacitors. It could be able to enhance the energy density of capacitors due to the intercalation of lithium ion. In this work, the properties of capacitors using the symmetric electrode were measured by organizing coin cell typed capacitors. Also, we made other capacitors having pre-intercalated lithium ions at one side of the electrode. The results of electrochemical measurements for these capacitors show that the storage capacitance was appeared. In other words, if the migration of lithium ions is supplied continuously in the electrolytes, lithium ions can be diffused into the carbonaceous materials. And it results in the improvement of capacitance compared to only using symmetric carbonaceous electrodes. Also, we conducted the same measurement with graphene oxide having a the large specific area in the same condition. Herein, we recognized that the large specific area is extremely important for supercapacitors.
Keywords
supercapacitors; electric double layer; electrode materials; Li ion; capacitance; carbonaceous materials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. B. Gu, J. U. Kim, H. W. Song, G. C. Park, and B. K. Park, Fluorination effect of activated carbon electrodes on the electrochemicalperformance of electric double layer capacitors, Electrochim. Acta, 45, 1533 (2000).   DOI
2 L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles, J. Power Sources, 226, 272 (2013).   DOI
3 Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 208, 210 (2012).   DOI
4 A. Krause, P. Kossyrev, M. Oljaca, S. Passerini, M. Winter, and A. Balducci, Electrochemical double layer capacitor and lithium-ion capacitor based oncarbon black, J. Power Sources, 196, 8836 (2011).   DOI
5 M. J. Jung, E. G. Jeong, S. Kim, S. I. Lee, J. S. Yoo, and Y. S. Lee, Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors, J. Fluorine Chem., 132, 1127 (2011).   DOI
6 S. R. Sivakkumar and A. G. Pandolfo, Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode, Electrochim. Acta, 65, 280 (2012).   DOI
7 W. J. Cao and J. P. Zheng, Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes, J. Power Sources, 213, 180 (2012).   DOI
8 R. Mukherjee, R. Krishnan, T. M. Lu, and N. Koratkar, Nanostructuredelectrodesforhigh-powerlithiumion batteries, Nano Energy, 1, 518 (2012).   DOI
9 D. R. Dreyer, S. J. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., 39, 228 (2010).   DOI
10 I. T. Kim, M. Egashira, N. Yoshimoto, and M. Morita, On the electric double-layer structure at carbon electrode/organic electrolytesolution interface analyzed by ac impedance and electrochemical quartz-crystalmicrobalance responses, Electrochim. Acta, 56, 7319 (2011).   DOI
11 R. Chandrasekaran, M. Koh, A. Yamauchi, and M. Ishikawa, Electrochemical cell studies based on non-aqueous magnesium electrolyte forelectric double layer capacitor applications, J. Power Sources, 195, 662 (2010).   DOI
12 X. Du, P. Guo, H. Song, and X. Chen, Graphene nanosheets as electrode material for electric double-layer capacitors, Electrochim. Acta, 55, 4812 (2010).   DOI