• Title/Summary/Keyword: 인장구조시스템

Search Result 158, Processing Time 0.026 seconds

Feasibility Evaluation of CHS Diagrid Systems for Low/Mid-Rise Building Structure (원형강관 다이아그리드 시스템의 중저층 건축구조물 적용 타당성 평가)

  • Gam, Sam-Do;Kim, Tae-Jin;Kwak, Jin-I
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.84-87
    • /
    • 2009
  • 본 논문에서는 최근 초고층 건축물에 많이 활용되어지는 기둥-가새 시스템인 다이아그리드 시스템을 활용하여 중저층 건축물에 적용가능성을 평가하였다. 본 시스템은 튜브구조의 형태로 횡력에 대한 저항력이 우수하며 중력하중과 황하중을 기초와 지반에 안전하게 하중을 전달한다. 다이아그리드는 경사기둥과 보를 반복적으로 삼각형 형태로 배치되어 중력하중을 받을 경우 수직부재는 압축력을 보는 인장력을 받게 된다. 경사기둥과 보를 연결하는 접합부는 H-형강으로 설계 시 제작이 복잡하고 외관이 좋지 않다. 하지만 원형강관을 사용 할 경우 복합하지 않은 형태로 설계가 가능하고 외관이 우수하기 때문에 외부에 노출이 가능해진다. 또한 원형강관은 개방형 단면 부재에 비해 압축좌굴과 비틀림에 대한 성능 등이 우수하여 구조적인 성능이 우수하다. 원형강관을 이용하여 다이아그리드 시스템이 고층 건축물 뿐만 아니라 중저층 건축물에도 적용 타당성을 검토하였으며 원형강관 접합부 설계는 한계상태설계법이 사용 된 KBC2008(안)을 이용하여 설계하였다.

  • PDF

Numerical Simulation of Membrane of LNG Insulation System using User Defined Material Subroutine (사용자지정 재료 서브루틴을 활용한 LNG선박 단열시스템 멤브레인의 수치해석)

  • Kim, Jeong-Hyeon;Kim, Seul-Kee;Kim, Myung-Soo;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.265-271
    • /
    • 2014
  • 304L stainless steel sheets are used as a primary barrier for the insulation of membrane-type liquefied natural gas(LNG) carrier cargo containment system. 304L stainless steel is a transformation-induced-plasticity(TRIP) steel that exhibits complex material behavior, because it undergoes phase transformation during plastic deformation. Since the TRIP behavior is very important mechanical characteristics in a low-temperature environment, significant amounts of data are available in the literature. In the present study, a uniaxial tensile test for 304L stainless steel was performed to investigate nonlinear mechanical characteristics. In addition, a viscoplastic model and damage model is proposed to predict material fractures under arbitrary loads. The verification was conducted not only by a material-based comparative study involving experimental investigations, but also by a structural application to the LNG membrane of a Mark-III-type cargo containment system.

A Nonlinear Truss Finite Element Model for Structures with Negative Poisson Effect Accompanied by Tensile Buckling (인장 좌굴 현상을 수반하는 음의 포아송 효과를 가지는 구조물 해석을 위한 비선형 트러스 유한요소 모델)

  • Tae-Wan Kim;Jun-Sik Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.193-201
    • /
    • 2023
  • In this study, a nonlinear truss finite element is developed to analyze structures with negative Poisson effect-induced tensile buckling. In general, the well-known buckling phenomenon is a stability problem under a compressive load, whereas tensile buckling occurs because of local compression caused by tension. It is not as well-known as classical buckling because it is a recent study. The mechanism of tensile buckling can be briefly explained from an energy standpoint. The nonlinear truss finite element with a torsional spring is formulated because the finite element has not been reported in the literature yet. The post-buckling analysis is then performed using the generalized displacement control method, which reveals that the torsional spring plays an important role in tensile buckling. Structures that mimic a negative Poisson effect can be constructed using such post-buckling behaviors, and one of the possible applications is a mechanical switch. The results obtained are compared to those of analytical solutions and commercial finite element analysis to assess the validity of the proposed finite element model. The numerical results show that the developed finite element model could be a viable option for the basic design of nonlinear structures with a negative Poisson effect.

Experimental study of Hydraulic Cable Connection Systems with Re-tensioning and Wireless Monitoring (재긴장과 무선 모니터링이 가능한 유압식 케이블 접합부시스템의 실험에 대한 연구)

  • Kim, Min-Su;Lee, Ki-Hak;Kim, Seong-Beom;Lee, Sung-Min;Baek, Ki-Youl
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.71-79
    • /
    • 2011
  • Due to the self-equilibrium status of the cable system, the loss of the tensioning in the cable system results in other cables carrying larger tension forces than those initially calculated by structural engineers. Also, turn-buckle systems, which have been widely used to pre-tension and/or re-tension the cables, are limited to use for small cables and to provide a rough estimation for tension forces. In this study, the re-tensioning cable connection systems were developed to overcome the problems mentioned above. The main objective of the proposed system is to re-tension large cables and measure the exact amount of tension forces of the cable systems. This connection system is also combined with the wireless signal monitoring module so that engineers are able to measure the tension forces any place where the internet is available. This paper presents the development of the re-tensioning cable connection systems and experiment using the real-scale cable systems to verify the fe-tensioning and signal monitoring systems.

Time-dependent Deformation Charateristics of Geogrid Using Wide Width Tensile Test (광폭인장시험을 통한 지오그리드의 시간의존적 변형 거동 고찰)

  • Yoo, Chung-Sik;Jeon, Han-Yong;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.71-80
    • /
    • 2008
  • This paper presents the reusults of wide width tensile tests under sustained and cyclic loads with vairous loading rate on geogrids. A seires of modified wide width tensile tests were conducted to investigate the effect of tensile strain rate on the deformation behavior of the geogrids. In addition, residual deformation characteristics of a geogrid under sustained or cyclic tests were also investigated. The results indicated that the residual deformation of a geogrid is strongly related to the viscous behavior of the geogrid, and the residual deformation can be well described by a hyperbolic curve. Also revealed was that residual deformation of a geogrid when subject to sustained or cyclic load should be described with the framework of viscous behavior.

Tensile Performance of PE Fiber-Reinforced Highly Ductile Cementitious Composite including Coarse Aggregate (골재의 입도분포 변화에 따른 PE 섬유보강 고연성 시멘트 복합체의 인장성능)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.95-102
    • /
    • 2020
  • For the purpose of developing a PE fiber-reinforced highly ductile cementitious composite having high tensile strain capacity more than 2% under the condition of containing aggregates with large particle size, this study investigated the tensile behavior of composites according to the particle size and distribution of aggregates in the composite. Compared with the mixture containing silica sand of which particle size is less than 0.6 mm, mixtures containing river sand and/or gravel with the maximum particle size of 2.36 mm, 4.75 mm, 5.6 mm, 6.7 mm were considered in the experimental design. The particle size distributions of aggregates were adjusted for the optimized distribution curves obtained from modified A&A model by blending different sizes of aggregates. All the mixtures presented clear strain-hardening behavior in the direct tensile tests. The mixtures with the blended aggregates to meet the optimum curves of aggregate size distributions showed higher tensile strain capacity than the mixture with silica sand. It was also found that the tensile strain capacity was improved as the maximum size of aggregate increased which resulted in wider particle size distribution. The mixtures with the maximum size of 5.6 mm and 6.7 mm presented very high tensile strain capacities of 4.83% and 5.89%, respectively. This study demonstrated that it was possible to use coarse aggregates in manufacturing highly ductile fiber-reinforced cementitous composite by adjusting the particle size distribution.

Structural Design of Domed Roof (광명 경륜 경기장 돔 구조설계)

  • Kim, Jong-Soo;Kim, Dong-Hwan;Park, Hyung-Suk;Kim, Yong-Nam;Shin, Chang-Hoon
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.255-263
    • /
    • 2004
  • 광명시 경륜 경기장은 국민 체육진흥공단에서 턴키(Turn key)공사로 발주하였고, CS구조+공간건축+대우건설, 삼성건설, 태영건설의 제출안이 당선되어 현재 시공중에 있다. 경기장의 저층부는 PC로 설계되었고, 지붕은 철골 트러스를 사용한 Dome 형상으로 이루어져 있다. 돔 지붕의 개념은 지붕에 물을 부었을 때 가장 흘러가기 쉬운 방향으로 트러스를 배치하여 유연한 힘의 흐름을 유도하는 것이다. 143.6m(폭)${\times}$183.5m(길이)${\times}$21m(높이)의 지붕엔 지붕의 개념인 Flow Truss를 물이 흐르는 방향의 방사형으로 배치하고, 내부에 압축링(Compression Ring Truss)과 외부에 인장링(Tension Ring Truss)를 설치하여 힘의 흐름을 단순화시켰고, 실내에서 보기에 플로우 트러스의 간격을 넓게 유지함으로써 개방감을 극대화시켰다. 또한 Flow Truss는 동일한 곡률과 길이로 설계하여 표준화시킴으로써 시공성과 경제성을 동시에 만족토록 하였다. 현재 저층부 시공은 거의 완료된 상황이고, 곧 지붕을 설치할 예정이다. 본 고에서는 돔 지붕의 형성 개념과 설계 과정을 살펴보고, 접합상세 등의 해결에 대해 살펴보겠다.

  • PDF

Hybrid Deck System for Partially Earth Anchored Cable Stayed Bridges (부분 인장형 사장교 주형의 복합 구조)

  • Cho, Jae-Young;Noh, Junghwi;Kim, Jung Joong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.30-36
    • /
    • 2013
  • Partially earth anchored (PEA) can improve the structural safety and economic feasibility of multiple span cable stayed bridge (CSB). The PEA-CSB can restrain axial compressive load acting on a tower and reduce the global buckling length of a stiffened girder. For these reasons, structural members subject to axial forces can be effectively utilized and material quantity required for a steel deck can be reduced to save construction cost. In this study, the PEA system was verified for its application on a multiple span CSB. The CSB is a four-tower multi-span bridge which has a main span length of 500 m. As high tensile stress was generated at the top of the bridge decks at the mid-span between two main columns, a hybrid deck system for enhancing the bridge deck sections was proposed. While the composite sections made of concrete and steel were used near to the main columns, steel sections were used at the mid-span between two main columns.

Failure Strength Analysis of Simply Supported Sandwich Slab Bridges made by Composite Materials (복합재료로 만들어진 단순지지 샌드위치 슬래브 교량의 파괴강도해석)

  • Han, Bong-Koo;Kim, Se-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.77-84
    • /
    • 2007
  • In this paper presented, a design method of sandwich slab bridge of simple supported made by composite materials. Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special orthotropic plates. Such systems with sections, boundary conditions other than Navier or Levy solution types, or with irregular cross sections, analytical solution is very difficult to obtain. Thus, Finite Difference Method is used for analysis of the pertinent problem. For the design of bridge made by the composite materials, cross-section is used the form-core shape because of this shape is economical and profitable, and for output of the stress value used F.D.M. Based the experimental of a composite specialist, an equation expressing the rate of decrease of tensile strength of glass fibers based on increase of mass was obtained. From these equations, one can estimate the rate of tensile strength reduction due to increased size. Tasi-Wu failure criterion for stress space is used. Strength-failure analysis procedure, using these reduced tensile strength, is presented.

Curing Kinetics and Mechanical Properties for Siloxane Contained ETSO-DDM/BPH Epoxy System (Siloxane을 포함한 ETSO-DDM/BPH계 에폭시 시스템의 경화동력학 및 기계적 특성 분석)

  • Kim, Hyo-Mi;Kim, Jong-Min;Han, Jung-Geun;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.364-370
    • /
    • 2009
  • The curing kinetics and mechanical properties of siloxane-diaminodiphenylmethane (ETSO-DDM) on the two kinds of bisphenol (BPH) system which are DGEBA and DGEBF were investigated with the different contents of ETSO. To investigate the curing kinetics of the ETSO-DDM/BPH systems, differential scanning calorimeter (DSC) was used. The mechanical properties of ETSO-DDM/BPH systems were also examined by universal testing machine (UTM), tensile test and flexural test. From experimental results, the activation energies and mechanical properties of ETSO-DDM/BPH were improved with the decrease contents of ETSO. This was due to the high cross-linking density made from short length of ETSO-DDM, resulting in improving the mechanical inter-locking between ETSO-DDM and BPH in these systems.