DOI QR코드

DOI QR Code

Tensile Performance of PE Fiber-Reinforced Highly Ductile Cementitious Composite including Coarse Aggregate

골재의 입도분포 변화에 따른 PE 섬유보강 고연성 시멘트 복합체의 인장성능

  • 이방연 (전남대학교 건축학부) ;
  • 강수태 (대구대학교 건설시스템공학과)
  • Received : 2020.08.31
  • Accepted : 2020.10.14
  • Published : 2020.10.30

Abstract

For the purpose of developing a PE fiber-reinforced highly ductile cementitious composite having high tensile strain capacity more than 2% under the condition of containing aggregates with large particle size, this study investigated the tensile behavior of composites according to the particle size and distribution of aggregates in the composite. Compared with the mixture containing silica sand of which particle size is less than 0.6 mm, mixtures containing river sand and/or gravel with the maximum particle size of 2.36 mm, 4.75 mm, 5.6 mm, 6.7 mm were considered in the experimental design. The particle size distributions of aggregates were adjusted for the optimized distribution curves obtained from modified A&A model by blending different sizes of aggregates. All the mixtures presented clear strain-hardening behavior in the direct tensile tests. The mixtures with the blended aggregates to meet the optimum curves of aggregate size distributions showed higher tensile strain capacity than the mixture with silica sand. It was also found that the tensile strain capacity was improved as the maximum size of aggregate increased which resulted in wider particle size distribution. The mixtures with the maximum size of 5.6 mm and 6.7 mm presented very high tensile strain capacities of 4.83% and 5.89%, respectively. This study demonstrated that it was possible to use coarse aggregates in manufacturing highly ductile fiber-reinforced cementitous composite by adjusting the particle size distribution.

이 연구에서는 입경이 큰 골재를 사용하면서 2% 이상의 인장변형률 성능을 나타내는 고연성 PE 섬유보강 시멘트 복합체 개발을 목적으로 골재의 크기와 입도분포에 따른 고연성 섬유보강 시멘트 복합체의 인장거동 특성을 살펴보고자 하였다. 0.6 mm 이하의 입경들로 구성된 규사를 사용한 배합을 기준으로 최대입경 2.36 mm, 4.75 mm, 5.6 mm, 6.7 mm의 강모래 및 강자갈을 사용한 배합을 비교하여 성능평가를 실시하였다. 골재의 입도분포는 수정 A&A 모델에 기반한 최적입도분포곡선에 가깝도록 세분화된 입경별 혼합비율을 조절하였다. 직접인장실험을 통해 구한 인장거동은 모든 배합에서 뚜렷한 인장변형률 경화 거동을 보였다. 골재 입경별 혼합비율을 조절하여 입도분포가 최적곡선에 가깝도록 한 경우에는 모든 배합에서 규사를 사용한 경우보다 높은 인장변형률 성능을 나타내었다. 또한 골재의 최대입경이 커서 입도분포가 넓을수록 높은 인장변형률 성능을 보였으며, 최대입경 5.6 mm, 6.7 mm의 굵은 골재를 포함하는 경우 각각 4.83%와 5.89%의 매우 높은 인장변형률 성능을 나타내었다. 이 연구를 통해 적절한 입도분포 조절을 통해 굵은 골재를 사용하면서도 고연성 섬유보강 시멘트 복합체의 제조가 가능함을 보였다.

Keywords

References

  1. Andreasen, A. H. M. and Andersen, J. (1930), About the relationship between grain and gradation gap in products of loose grains (with a few experiments), Kolloid-Zeitschrift, 50(3), 217-228. (In German) https://doi.org/10.1007/BF01422986
  2. De Koker, D. and van Zijl, G. (2004), Extrusion of Engineered Cement-Based Composite Material, Proceedings of BEFIB, Varenna, Lake Como, Italy, 1301-1310.
  3. De Larrard, F. and Tondat, P. (1993), Sur la contribution de la topologie du squelette granulaire a la resistance en compression du beton, Materials and Structures, 26, 505-516. (In French) https://doi.org/10.1007/BF02472861
  4. Fuller, W. B. and Thompson, S. E. (1907), The Laws of Proportioning Concrete, Transactions of the American Society of Civil Engineers, 59, 67-143. https://doi.org/10.1061/TACEAT.0001979
  5. Funk, J. E. and Dinger, D. R. (1994), Predictive Process Control of Crowded Particulate Suspension, Applied to Ceramic Manufacturing, Kluwer Academic Press, 75-84.
  6. Lee, B. Y. (2012), Strain-Hardening Cementitious Composites with Low Viscosity Suitable for Grouting Application, Journal of Korea Institute of Structural Maintenance and inspection, 16(1), 55-63. (In Korean) https://doi.org/10.11112/jksmi.2012.16.1.055
  7. Li, V. C. (1998), ECC-Tailored Composites through Micromechanical Modeling, Fiber Reinforced Concrete: Present and the Future, CSCE, Montreal, QC, Canada, 64-97.
  8. Li, V. C. and Leung, C. K. Y. (1992), Steady state and multiple cracking of short random fiber composites, Journal of Engineering Mechanics, 118(11), 2246-2264. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246)
  9. Li, V. C., Mishra, D. K., and Wu, H. C. (1995), Matrix design for pseudo strain-hardening fiber reinforced cementitious composites, Materials and Structures, 28(10), 586-595. https://doi.org/10.1007/BF02473191
  10. Li, V. C., Wang, S., and Wu, C. (2001), Tensile Strain-Hardening Behavior of PVA-ECC", ACI Materials Journal, 98(6), 483-492.
  11. Liao, W. C., Chao, S. H., Park, S. Y., and Naaman, A. E. (2006), Self-Consolidating High Performance Fiber Reinforced Concrete (SCHPFRC) - Preliminary Investigation, Report No. UMCEE 06-02, University of Michigan, Ann Arbor, MI, 68 pp.
  12. Moreno, D. M., Trono, W., Jen, G., Ostertag, C., and Billington, S. L. (2012), Tension-Stiffening in Reinforced High Performance Fiber-Reinforced Cement-Based Composites under Direct Tension, Proceedings of High Performance Fiber Reinforced Cement Composites(HPFRCC6), Ann Arbor, USA, 263-270.
  13. Nallthambi, P., Karihaloo, B., and Heaton, B. (1984) Effect of Specimen and Crack Sizes, Water/Cement Ratio and Coarse Aggregate Texture upon Fracture Toughness of Concrete, Magazine of Concrete Research, 36(129), 227-236. https://doi.org/10.1680/macr.1984.36.129.227
  14. Rokugo, K. and Kanda, K. (2013), Strain Hardening Cement Composites: Structural Design and Performance, State-of-the-Art Report of the RILEM Technical Committee 208-HFC, SC3, Springer, 59-66.
  15. Sahmaran, M., Lachemi, M., Hossain, K. M. A., and Ranade, R. (2009), Influence of Aggregate Type and Size on Ductility and Mechanical Properties of Engineered Cementitious Composites, ACI Materials Journal, 106(3), 308-316.
  16. Sial, S. U. and Khan, M. I. (2018), Performance of Strain hardening cementitious composite as strengthening and protective overlay in flexural members, MATEC Web of Conferences - ICCRRR 2018, 199, Article No. 09005.
  17. Wang, S. and Li, V. C. (2003), Lightweight Engineered Cementitious Composites(ECC), Proceedings of High Performance Fiber Reinforced Cement Composites(HPFRCC4), Ann Arbor, USA, 379-390.