• Title/Summary/Keyword: 인장강화

Search Result 343, Processing Time 0.029 seconds

Tension Stiffening Effect in Axially loaded Concrete Member Oncrete Member (축방향 인장을 받는 콘크리트 부재의 FRP 보강근의 인장강화 효과)

  • Nak Sup Jang;Chi Hoon Nho;Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.47-54
    • /
    • 2023
  • In this study, the tensile behavior of concrete specimens reinforced with GFRP (Glass Fiber Reinforced Polymer), BFRP (Basalt Fiber Reinforced Polymer), and CFRP (Carbon Fiber Reinforced Polymer) bars was experimentally analyzed. The tensile strength of the FRP bars is appeared to be similar to the design strength, but the elastic modulus was somewhat lower. Additionally, the specimens for tension stiffening effect were manufacured using OPC (Ordinary Portland Cement) and SFRC (Steel Fiber Reinforced Concrete), with dimensions of 150(W)×150(B)×1000(H) mm. The crack spacing of specimens was most significant for GFRP reinforcement bars, which have a lower elastic modulus and a smoother surface, while BFRP and CFRP bars, with somewhat rougher surfaces and higher elastic moduli, showed similar crack spacings. In the load-strain relationship, GFRP bars exhibited a relatively abrupt behavior after cracking, whereas BFRP and CFRP bars showed a more stable behavior after the cracking phase, maintaining a certain level of tension stiffening effect. The tension stiffening index was somewhat smaller as the diameter increased, and GFRP, compared to BFRP, showed a higher tension stiffening index.

Tension Stiffening Effect and Crack Behavior of Tension Members Using High Strength Concrete (고강도 콘크리트 인장부재의 인장강화효과와 균열거동)

  • Kim, Jee-Sang;Park, Chan Hyuk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.50-58
    • /
    • 2018
  • The verification of serviceability of concrete structures requires more informations on the composite behaviors between concrete and reinforcement. Among them, the investigation of crack widths and spacings is based on the tension stiffening effects. In this paper, the tension stiffening effects of high strength concrete members with compressive strength of 80 and 100MPa are investigated experimentally. It was found that the current design code which is based on the tests of normal strength concrete may not describe the tension stiffening effects in high strength concrete correctly. The coefficient that can appropriately reflect the tension stiffening effects in the high strength concrete was proposed. Also, the crack spacing was investigated through the cracking behaviors and the crack width according to the difference of the strains in steel and concrete was estimated. The results of this paper may be used to examine the tension stiffening effects of high strength concrete members.

Tension Stiffening Effect of RC Tension Members Reinforced with Amorphous Steel Fibers (비정질 강섬유로 보강된 철근콘크리트 인장부재의 인장강화효과)

  • Park, Kyoung-Woo;Lee, Jun-Seok;Kim, Woo;Kim, Dae-Joong;Lee, Gi-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.581-589
    • /
    • 2014
  • This paper presents the tension stiffening behavior from experimental results of each 6 amorphous steel fibers and normal steel fibers reinforced direct tensile specimens with the main variables such as cover thickness to bar diameter ratio. A tension stiffening effect for steel fiber reinforced RC tension members improve on the increase in cover thickness, and also amorphous steel fiber is usually superior to normal steel fiber. The reinforcement of steel fibers controlled the splitting cracks and led to significant increase in the tension stiffening effect. In particular, if cover thickness is more than twice the bar diameter, the amorphous steel fiber reinforced specimen is controlled the splitting crack and increased the tension stiffening effect. And, the tension stiffening effect of amorphous steel fiber reinforced concrete tension members is different to current structural design code provision.

Nonlinear FE Analysis of RC Shear Walls (철근콘크리트 전단벽의 비선형 유한요소해석)

  • 곽효경;김도연
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.293-308
    • /
    • 1999
  • 이 논문에서는 패널, 깊은 보 그리고 전단벽과 같이 평면응력상태하에 있는 철근콘크리트 구조물의 비선형 유한요소해석에 있어서의 직교이방성 콘크리트 구성 모델의 적용성을 보여준다. 등가의 일축 변형을 개념을 토대로 콘크리트의 구성 관계가 주변형률 축과 일치하고 하중이력에 따라 회전하는 직교하는 축에 대해 제시된다. 제안된 모델은 이축 압축응력상태와 인장-압축 응력상태에서 각각 압축강도의 증가와 인장 저항력의 감소효과를 보여주는 이축 파괴영역의 정의를 포함한다. 인장균열이 발생한 후, 콘크리트의 압축강도의 감소효과가 제시되고, 인장강화효과로 알려진 철근에 의해 지지되는 콘크리트의 인장응력이 고려된다. 평균응력과 평균변형률 개념을 사용하여 힘의 평형, 적합조건 그리고 철근과 철근을 둘러싼 콘크리트 사이의 부착응력-슬림 관계를 토대로 인장강화효과를 모사하기 위한 모델이 제안된다. 유한요소 모델에 의한 예측은 유용한 실험자료와의 비교에 의해 입증된다. 이 논문에서는 해석결과와 이상화한 전단 패널실험으로부터 얻어진 실험값의 비교연구가 수행되고, 제안된 모델의 타당성을 보여주기 위해 서로 다른 응력상태하의 전단 패널 보와 벽체의 힘-변위 관계를 평가하였다.

  • PDF

Material Nonlinear Analysis of RC Beams Based on Moment-Curvature Relations (모멘트-곡률 관계에 기초한 철근콘크리트 보의 재료비선형 해석)

  • 곽효경;김지은
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.295-307
    • /
    • 1998
  • 철근콘크리트 보에 대해서 인장강화효과의 소성힌지길이를 고려한 재료비선형 해석을 수행하였다. 비선형 해석에서 자유도가 많은 대형구조물에 적용시키기에는 많은 제약이 따르는 복잡한 층상해석기법을 사용하는 대신 단면해석을 통해 미리 구성된 모멘트-곡률 관계를 이용하였으며, 유한요소해석에서 사용요소의 크기에 따른 수치해석상의 오차를 줄이기 위해 인장강화효과와 소성힌지길이 개념을 도입하였다. 마지막으로 제안된 해석 알고리즘의 타당성을 검증하기 위하여 해석결과와 실험결과간의 상호 관계를 비교, 분석하였다.

  • PDF

Tension-Stiffening Model and Application of Ultra High Strength Fiber Reinforced Concrete (초고강도 강섬유보강 철근콘크리트의 인장강화 모델 및 적용)

  • Kwak, Hyo-Gyoung;Na, Chaekuk;Kim, Sung-Wook;Kang, Sutae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.267-279
    • /
    • 2009
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber reinforced concrete (UHSFRC) structures subjected to monotonic loading is introduced. The material properties of UHSFRC, such as compressive and tensile strength or elastic modulus, are different from normal strength reinforced concrete. The uniaxial compressive stress-strain relationship of UHSFRC is designed on the basis of experimental result, and the equivalent uniaxial stress-strain relationship is introduced for proper estimation of UHSFRC structures. The steel is uniformly distributed over the concrete matrix with particular orientation angle. In advance, this paper introduces a numerical model that can simulate the tension-stiffening behavior of tension part of the axial member on the basis of the bond-slip relationship. The reaction of steel fiber is considered for the numerical model after cracks of the concrete matrix with steel fibers are formed. Finally, the introduced numerical model is validated by comparison with test results for idealized UHSFRC beams.

Nonlinear Analysis of UHSFRC Beam considering Tension-Stiffening Effect (인장강화 효과를 고려한 초고강도 강섬유보강 철근콘크리트 보 부재 수치해석)

  • Kwak, Hyo-Gyoung;Na, Chae-Kuk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.183-184
    • /
    • 2009
  • Recently, research is focused on the behavior of ultra high strength fiber reinforced concrete from the high rise building to the span bridge. To verify the characteristics of the behavior of UHSFRC beam, the tension-stiffening model of UHSFRC is adopted as nonlinear analysis.

  • PDF

Solute Strengthening Effects for 36 Stainless Steel at Elecated Temperature (고온에서의 316스테인리스강의 용질원자에 의한 강화효과)

  • 백남주;이상매
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.4
    • /
    • pp.433-441
    • /
    • 1986
  • 본 연구에서는 인장시험과 인장시 변형율속도 변화와 온도변화를 주는 시험을 통하여 316스테인리스강에 있어서의 비탄성거동을 규명하여 가공경화에 대한 용질강화 효과를 시험하고, Voce형의 발전방정식(evolutionary equation)을 포함하는 Arrhenius 형의 구성식에 용질강화효과를 첨가하여 정확한 비탄성 해석을 기하고자 한다.

Effects of Short-fiber Aspect Ratio and Diameter Ratio on Tensile Properties of Reinforced Rubber (단섬유 종횡비 및 직경비가 강화고무의 인장특성에 미치는 영향)

  • 류상렬;이동주
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.18-25
    • /
    • 2003
  • The tensile properties of short nylon6 fiber reinforced NR and SBR have been investigated as functions of fiber aspect ratio(AR), diameter ratio(DR), interphase condition, and fiber content. The tensile strength increased with increasing fiber AR(20 min.) and good interphase conditions. The short-fiber(DR=3 and AR=20 min.) reinforced SBR did not show the dilution effect for all interrhase conditions. And the short-fiber(DR=3 and AR=20min.) reinforced NR did not show the dilution effect except for the no-coating. The tensile moduli were significantly improved due to fiber AR. fiber content, and good interphase at same DR. The better interphase condition showed the higher pull-out force at same DR. Also, the stress analysis near the fiber end carried out using axisymmetric FEA to be convinced of the reinforcing mechanism. It is found that the fiber AR, interphase and DR have an important effect on tensile properties.

Effect of Measuring Parameters of Tensile Strength of Fiber-reinforced Composite Materials (섬유강화 복합재료의 인장강도 측정변수에 따른 영향)

  • Lee, Jae-Dong;Jin, Young-Ho;Kim, Min-Seok;Son, Hyun-Sik;Kwon, Dong-Jun
    • Journal of Adhesion and Interface
    • /
    • v.22 no.3
    • /
    • pp.85-90
    • /
    • 2021
  • Generally, the tensile strength of carbon fiber reinforced composite (CFRP) should be determined to produce this material. The tensile strength was performed based on ASTM D3039, and this test could cause the error by specimens and human. In this research, the CFRP tensile test was performed with different thickness of specimens and tap, adhesive for attaching tap, and pressure of jig to hold the specimens, while the test was performed based on ASTM D3039. The tensile stress and modulus exhibited differently with different specimen thicknesses, and the 1~1.5 mm thickness of the specimen was optimized. In the case of 0.28 MPa jig pressure, the slip or fracture at the clamping area of the specimen has not occurred, and specimens were fractured to the center section of the specimen. The adhesive to attach jig on specimen should be used to exhibit high adhesive stress. Experimental parameters could cause errors. It is expected to achieve an accurate tensile property evaluation of composite materials via improvements in adhesives, tabs, and jigs.