DOI QR코드

DOI QR Code

Tension Stiffening Effect of RC Tension Members Reinforced with Amorphous Steel Fibers

비정질 강섬유로 보강된 철근콘크리트 인장부재의 인장강화효과

  • Park, Kyoung-Woo (Research and Development Center, Sani Construction Co.) ;
  • Lee, Jun-Seok (Dept. of Civil Engineering, Chonnam National University) ;
  • Kim, Woo (Dept. of Civil Engineering, Chonnam National University) ;
  • Kim, Dae-Joong (Dept. of Civil and Environmental Engineering, Jeonnam Provincial College) ;
  • Lee, Gi-Yeol (Dept. of Civil Engineering, Suncheon Jeil College)
  • 박경우 (산이건설(주) 기업부설연구소) ;
  • 이준석 (전남대학교 토목공학과) ;
  • 김우 (전남대학교 토목공학과) ;
  • 김대중 (전남도립대학교 토목환경과) ;
  • 이기열 (순천제일대학교 토목과)
  • Received : 2014.03.05
  • Accepted : 2014.04.15
  • Published : 2014.10.31

Abstract

This paper presents the tension stiffening behavior from experimental results of each 6 amorphous steel fibers and normal steel fibers reinforced direct tensile specimens with the main variables such as cover thickness to bar diameter ratio. A tension stiffening effect for steel fiber reinforced RC tension members improve on the increase in cover thickness, and also amorphous steel fiber is usually superior to normal steel fiber. The reinforcement of steel fibers controlled the splitting cracks and led to significant increase in the tension stiffening effect. In particular, if cover thickness is more than twice the bar diameter, the amorphous steel fiber reinforced specimen is controlled the splitting crack and increased the tension stiffening effect. And, the tension stiffening effect of amorphous steel fiber reinforced concrete tension members is different to current structural design code provision.

이 논문은 비정질 강섬유 및 일반 강섬유로 보강된 철근콘크리트 인장 부재의 인장강화효과에 대해서 직접인장 실험을 통하여 비교 분석한 것이다. 이를 위하여 피복두께를 변수로 하는 직사각형 단면의 비정질 강섬유 및 일반 강섬유로 보강된 직접인장실험체를 각 6개씩 제작하여 실험을 실시하였다. 실험결과에 따르면 강섬유로 보강된 철근콘크리트 인장부재는 피복두께가 두꺼워질수록 인장강화효과가 증가하였으며, 비정질 강섬유가 일반 강섬유보다 인장강화효과가 더 우수하였다. 강섬유 보강에 따른 쪼갬균열의 발생 및 진행이 크게 감소하였으며, 비정질 강섬유로 보강된 경우는 철근 직경의 2배 이상 피복두께가 확보되면 쪼갬균열이 억제되고 그에 따라서 인장강화효과가 크게 증가하였다. 특히 일반 강섬유와 비교하여 비정질 강섬유로 보강된 철근콘크리트 부재의 경우는 현행 설계기준의 인장강화효과 규정과는 다르게 작용하중에 따라서 인장강화효과가 증가하였는데, 이 결과는 인장강화효과의 크기를 결정하는 인장강성 계수의 분석을 통하여 확인하였다.

Keywords

References

  1. Shah, S. P., "Do Fibers Increase the Tensile Strength of Cement-Based Matrixes," ACI Materials Journal, Vol. 86, No. 6, 1991, pp. 595-602.
  2. Abrishami, H. H. and Mitchell, D., "Influence of Steel Fibers on Tension Stiffening," ACI Structural Journal, Vol. 94, No. 6, 1997, pp. 769-776.
  3. Hong, C. W., Yun, K. K., Lee, J. H., and Park, J. S., "Development of Tension Stiffening Models for Steel Fibrous High Strength Reinforced Concrete Members," Journal of the Korea Concrete Institute, Vol. 11, No. 6, 1999, pp. 35-46 (in Korean).
  4. Bischoff, P. H., "Tension Stiffening and Cracking of Steel Fiber-Reinforced Concrete," ASCE Journal of Materials in Civil Engineering, Vol. 15, No. 2, 2003, pp. 174-182. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(174)
  5. Lee, S. C., Kim, J. H., Cho, J. Y., and Shin, K. J., "Tension Stiffening od Reinforced High Performance Fiber Reinforced Cementitious Composites," Journal of the Korea Concrete Institute, Vol. 22, No. 6, 2010, pp. 859-866 (in Korean). https://doi.org/10.4334/JKCI.2010.22.6.859
  6. Hameed, R., Turatsinze, A., Duprat, F., and Sellier, A., "A Study on the Reinforced Fibrous Concrete Elements Subjected to Uniaxial Tensile Loading," KSCE Journal of Civil Engineering, Vol. 14, No. 4, 2010, pp. 547-556. https://doi.org/10.1007/s12205-010-0547-0
  7. CEB-FIP, CEB-FIP Model Code 1990, Comite Euro-International Du Beton, Paris, 1991, pp. 247-251.
  8. European Committee for Standardization, Eurocode 2-Design of Concrete Structures, European Committee for Standardization, Brussels, 2002, pp. 124-131.
  9. Fields, K. and Bischoff, P. H., "Tension Stiffening and Cracking of High-Strength Reinforced Concrete Tension Members,"ACI Structural Journal, Vol. 101, No. 4, 2004, pp. 447-56.
  10. Yang, J. M., Yoon, S. H., Choi, S. J., and Kim, G. D., "Development and Application of Pig Iron Based Amorphous Fiber for Concrete Reinforcement," Magazine of the Korea Concrete Institute, Vol. 25, No. 4, 2013, pp. 38-41 (in Korean).
  11. Ganesan, N., Indira, P. V., and Sabeeba, M. V., "Tension Stiffening and Cracking of Hybrid Fiber- Reinforced Concrete," ACI Materials Journal, Vol. 110, No, 6, 2013, pp. 715-721.
  12. Kim, Y. S., Crack Spacings Relationship and Tension Stiffening Effect on Axially Loaded Tension Members Reinforced with Amorphous Steel Fibers, Department of Architectural Engineering, Gwangju University, Master's Thesis, 2014 (in Korean).
  13. CEB-FIP, CEB-FIP Model Code for Concrete Structures, Comite Euro-International Du Beton, 1978, 348pp.
  14. Lee, S. C., Cho, J. J., and Vecchio, F. J., "Tension Stiffening Model for Steel Fiber-Reinforced Concrete Containing Conventional Reinforcement," ACI Structural Journal, Vol. 110, No. 4, 2013, pp. 639-648.
  15. Deluce, J. R., Lee, S. C., and Vecchio, F. J., "Cracking Model for Steel Fiber-Reinforced Concrete Members Containing Conventional Reinforcement," ACI Structural Journal, Vol. 111, No. 1, 2014, pp. 93-102.
  16. Deluce, J. R. and Vecchio, F. J., "Cracking Behavior of Steel Fiber-Reinforced Concrete Members Containing Conventional Reinforcement," ACI Structural Journal, Vol. 110, No. 3, 2013, pp. 481-490.
  17. Korea Concrete Institute, Structural Concrete Design Code, Kimoondang Publishing Company, Seoul, 2012, pp. 300-302 (in Korean).

Cited by

  1. Comparsions for Flexural Performance of Amorphous Steel Fiber Reinforced Concrete vol.24, pp.3, 2015, https://doi.org/10.7844/kirr.2015.24.3.66