• Title/Summary/Keyword: 인발 하중

Search Result 198, Processing Time 0.021 seconds

Bond Strength of Steel Fiber Incorporated in Ultra High Performance Fiber-Reinforced Concrete (초고성능 섬유보강 콘크리트에 혼입된 강섬유의 부착강도 평가)

  • Kang, Su-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.547-554
    • /
    • 2013
  • This study was intended to estimate the bond strength of steel fiber in UHPFRC through pullout test. The pullout test was carried out with the double-sided pullout specimens with multiple fibers. First, the effect of fiber density on the bond strength was investigated, and the experimental result presented that the density range considered in this study was proved not to produce fiber-to-fiber interaction. The bond strength was estimated from several methods, which are based on the pullout load or energy at peak load, and the total energy absorbed until fibers are pulled out completely. the estimated bond strength obtained from the total energy was shown to be under the influence of the embedded length of fiber. the bond strengths obtained from peak load condition was 6.64 MPa in average, which had little difference compared to 6.46 MPa calculated by peak load only. Considering simplicity of test and analysis, it may be no matter to estimate the bond strength from peak load in pullout test.

The Application of a Simplified Pullout Test for High-Strength Concrete (고강도 콘크리트에 대한 간이 인발시험법 적용)

  • Ko, Hune-Bum;Jeon, Doo-Jin;Lee, Min-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.49-55
    • /
    • 2017
  • In the seventies, a number of researchers carried out experiments on pullout tests with prototype equipment, and the pullout test was certified as a reliable nondestructive testing(NDT) method for determining the strength of concrete. To estimate the strength of high-strength concrete, we propose a simplified pullout test that uses as a break-off bolt a standard 10mm bolt with a groove on the shaft, an insert nut, and a pullout instrument that includes a hydraulic oil pump without a load cell. To verify the advantages of the simplified pullout test(low cost, simplicity, and convenience), four wall specimens were tested with two levels of concrete strength, 30 MPa and 50 MPa, using a simplified pullout tester with a load cell. The pullout load and concrete compressive strength were measured every day until day 7, day 14, day 21 and day 28. It was found that the pullout load was very similar to the compressive strength. Therefore, we have verified that a simplified pullout test can be used to evaluate the in-place strength of high-strength concrete in structures. The prediction equation of the groove diameter of the break-off bolt(y) with the concrete strength(x) was derived as y=0.05x+3.79, with a coefficient of determination of 0.88 found through regression analysis.

Study on Pullout Behavior and Determination of Ultimate Uplift Capacity of Pile Driven in Small Pressured Chamber (소형 압력 토조내에 타입된 말뚝의 인발 거동과 극한 인발 지지력 결정에 관한 연구)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.19-28
    • /
    • 1995
  • Based on the various test data acquired in the field, the large pressure chamber and the small pressure chamber, uplift behaviors and method of determining the ultimate uplift capacity of pile driven in small pressure chamber were studied. After uplift pile experienced 2 or 3 sudden slip due to increase of uplift load, complete pullout failure was occurred. Thus, it appears that the ultimate uplift capacity could be identified as the load at displacement where first slip occurs. The ultimate uplift capacity might be determined in every test and the disturbance after first uplift test could be recovered by adding one blow of the drop hammer, which had to depend on the model pile capacity.

  • PDF

Field Pull-out Test and Numerical Analysis for Multi-rebar Nail (다철근 네일의 현장인발시험 및 수치해석)

  • Jeon, Sang-Soo;Kim, Doo-Seop;Jang, Yang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.43-52
    • /
    • 2008
  • In this study, the verification test and creep test for both a single-rebar nail and a multi-rebar nail are carried out to investigate a tensile strength for both nails. The adhesion effects between a rebar and a cement grout, a mobilized frictional force induced by pull-out load, and load transfer characteristics are examined. The results obtained from the field pull-out tests and from the numerical analysis using $FLAC^{2D}$ which is one of the programs developed based on the finite difference method are analyzed and compared for a single-rebar nail and a multi-rebar nail. The field pull-out test results for a multi-rebar nail relative to a single-rebar nail show that a tensile failure load is relatively large and the pull-out loads are well transferred to the ground in deep depth.

Limit Analysis of Plane Strain Drawing (평면 변형 인발의 극한 해석)

  • 김병민;최인근;최재찬;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1407-1416
    • /
    • 1991
  • 본 연구에서는 Liu의 수식화를 바탕으로 가공 경화성을 고려하여 수식화를 재 구성하고, 유한요소 프로그램을 개발하여 평면 변형 인발문제를 극한 해석함으로써, 성형에 필요한 한계 하중 및 최적 속도장을 직접적으로 구하였다.수렴되어진 최적 속도장으로 각 요송에서의 변형률 속도, 변형률 및 격자 변형등을 수치적으로 계산함 으로써 가공에 따른 변형 특성도 파악하였다. 한계 하중은 항공기 구조용 소재인 알 루미늄 6061 재료를 이용하여 판재 인발 실험을 행함으로써 얻은 결과치와 비교 검토 하였으며, 유동 특성을 관찰하기 위하여 격자 왜곡(grid distortion) 실험을 하여 얻 은 변형 패턴과 수치 계산에서 구한 격자변형 패턴을 상호 비교하였다.

Performance Evaluation of Pull-out Load of a New Type of Double-wall Pile Foundation for Easy Demolition (기초구조물 회수가 용이한 신형식 이중벽 말뚝기초의 인발하중 성능평가)

  • Kim, Jae-Hyun;Kim, Jeong-Soo;Lee, Minjy;Sven, Falcon Sen;Choo, Yun Wook;Hwang, Sung-Pil
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.21-32
    • /
    • 2022
  • Steel pile foundations are widely used for offshore constructions due to their high bearing capacity and efficiency. Typically, offshore structures that have reached the end of their design life are required to be demolished. However, pile foundations are often left on site due to technical and economic limitations. The pile left on the site not only pollutes the environment, but can also cause obstacles for the construction of new structures. Therefore, research is required to completely eliminate these foundations at the site. In this study, a new type of double-wall pile foundation that can drastically reduce the pull-out load was conceptually proposed, and a series of model tests were performed to validate the performance of the double-wall pile foundation. The installation and extraction of the double-wall pile were simulated in dry sand in the model test, and the measured up-lift load was compared to that of the conventional pile. According to the result, the maximum up-lift load induced by the decommissioning of the double-wall pile was reduced by 45% when compared to the traditional pile in dense sand. This study verified the mechanism for reducing the up-lift load of the double-wall foundation and confirmed the possibility of completely decommissioning a pile that has reached the end of its nominal service life.

Numerical Analysis on Drained and Undrained Pullout Capacity in Reinforced Soil (보강토에서의 배수 및 비배수 인발력에 대한 수치해석)

  • Lee, Hong-Sung;Son, Moo-Rak
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.113-123
    • /
    • 2007
  • In order to ensure the stability of reinforced structures backfilled with low permeability soil, it is very important to determine the change in undrained pullout capacity compared to drained pullout capacity prior to design. In this research, a series of numerical analyses on laboratory pullout tests have been performed on different materials (clean sand, 5, 10, and 15% silty sand), different overburden pressures (30, 100 and 200 kPa), and different drainage conditions (drained and undrained) in order to compare drained pullout capacity with undrained pullout capacity. The results of numerical analysis also have been compared with the results of the laboratory pullout tests. The analysis results show that both drained and undrained pullout capacity are influenced by silt contents and increase with increase of friction angle of the soil and overburden pressure. In undrained condition, the effective stresses acting on the reinforcement decrease as excessive pore pressures are generated, resulting in decrease in pullout capacity; 57% for 30 kPa, and 70% for 100 and 200 kPa. These results show a good agreement with the results of the laboratory pullout tests performed under the same condition.

Drained and Undrained Pullout Capacity in Steel Strip Reinforced Silty Sands (강보강재로 보강된 실트질 모래의 배수 및 비배수 인발력)

  • Lee Hong-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.5-13
    • /
    • 2006
  • Effective stresses may decrease due to generation of excessive pore pressure at the interface between soil and reinforcement in undrained condition such as rapid drawdownof groundwater level, resulting in the decrease in pullout capacity of the reinforcement. In this research, a series of laboratory pullout tests have been performed on different materials (clean sand, 5, 10, 15 and 35% silty sand), different overburden pressures (30, 100 and 200 kPa), and different drainage conditions (drained and undrained) in order to compare drained pullout capacity with undrained pullout capacity. The test results show that both drained and undrained pullout capacity are influenced by silt contents and increase with the increase of friction angle of the soil. The pullout capacity and the pullout displacement required to reach the peak value also increase as the overburden pressure increases. In undrained condition, the effective stresses acting on the reinforcement decrease as excessive pore pressures are generated, resulting in the decrease in pullout capacity and pullout displacement.

Load Transfer of Tension and Compression Anchors in Weathered Soil (인장형 앵커와 압축형 앵커의 하중전이에 관한 연구)

  • 김낙경
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.59-68
    • /
    • 2001
  • 풍화토 지반에 설치된 그라운드 앵커의 하중전이 현상을 규명하기 위하여 성균관대학교 지반시험장에서 인발시험을 수행하였다. 지반과 구조물을 일체화시키는데 사용하는 앵커는 앵커체와 지반의 마찰력에 의해서 구조물을 지지하는 역할을 하며 앵커의 하중과 변형의 관계를 규명하기 위해서는 앵커의 마찰력 분포의 변화(하중전이)가 중요한 요소가 된다. 하중 재하시 앵커체에 발생하는 하중전이 분포는 앵커의 인발 지지력과 밀접한 관계가 있고 앵커체의 종류(인장형 또는 압축형), 정착장의 길이, 지반 조건 등에 따라 분포 양상이 변하기 때문에 하중전이를 이해하기 위해서는 강선과 그라우트의 하중분포 그리고 앵커 그라우트체와 지반과의 마찰력 분포를 알아야 한다. 앵커의 자유장의 강선에 작용하는 응력, 그라우트체에 작용하는 응력, 그리고 정착장 강선의 응력을 계측하여 강선과 그라우트의 정착응력 및 그라우트와 지반에서의 마찰력 분포를 구함으로써 강선-그라우트-지반의 복합적인 거동에 따른 각 하중 단계마다의 하중전이 분포를 구하였다. 또한 현장시험 결과의 신뢰성 확보를 위하여 수치해석 모델링을 통하여 해석을 수행하여 비교하였다.

  • PDF

Pullout Characteristics of End Fixed Nails (양단정착형 쏘일네일링의 인발특성)

  • Lee, Bongjik;Kim, Josoon;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.5-11
    • /
    • 2007
  • In this study, several pullout tests were carried out under various field conditions to evaluate the pullout force of the end fixed nails. Pullout resistance force, displacement and friction force between the grouting and nail were measured in end fixed nails installed in soft rock, weathered rock and weathered soil. Furthermore, the field test were also carried out under the same condition using the conventional type nails. Based on the test results, it is concluded that the end fixed nails showed larger ultimate resistance force compared with conventional types nails, approximately two times in weathered soil and 1.6 times of weathered rock, respectively. The skin friction is also increased in end fixed type about 1.8~3.0 times. Finally, it is concluded in the base of the force transfer properties that using the end fixed nails could decrease the displacement and show a uniform resistance in entire length of nails.

  • PDF