Browse > Article
http://dx.doi.org/10.4334/JKCI.2013.25.5.547

Bond Strength of Steel Fiber Incorporated in Ultra High Performance Fiber-Reinforced Concrete  

Kang, Su-Tae (Dept. of Civil Engineering, Daegu University)
Publication Information
Journal of the Korea Concrete Institute / v.25, no.5, 2013 , pp. 547-554 More about this Journal
Abstract
This study was intended to estimate the bond strength of steel fiber in UHPFRC through pullout test. The pullout test was carried out with the double-sided pullout specimens with multiple fibers. First, the effect of fiber density on the bond strength was investigated, and the experimental result presented that the density range considered in this study was proved not to produce fiber-to-fiber interaction. The bond strength was estimated from several methods, which are based on the pullout load or energy at peak load, and the total energy absorbed until fibers are pulled out completely. the estimated bond strength obtained from the total energy was shown to be under the influence of the embedded length of fiber. the bond strengths obtained from peak load condition was 6.64 MPa in average, which had little difference compared to 6.46 MPa calculated by peak load only. Considering simplicity of test and analysis, it may be no matter to estimate the bond strength from peak load in pullout test.
Keywords
UHPFRC; steel fiber; pullout test; bond strength;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Richard, P. and Cheyrezy, M. H., "Reactive Powder Concrete with High Ductility and 200-800MPa Compressive Strength," Concrete Technology: Past, Present, and Future, SP-144, American Concrete Institute, Farmington Hills, 1994, pp. 507-518.
2 Leung, C. K. Y. and Shapiro, N., "Optimal Steel Fiber Strength for Reinforcement of Cementitious Materials," Journal of Materials in Civil Engineering, Vol. 11, No. 2, 1999, pp. 116-123. (doi: http://dx.doi.org/10,1016/(ASCE) 0899-1561(1999)11:2(116))   DOI   ScienceOn
3 Fantilli, A. P., Mihashi, H., and Vallini, P., "Effect of Bond-Slip on the Crack Bridging Capacity of Steel Fibers in Cement-Based Composites," Journal of Materials in Civil Engineering, Vol. 20, No. 9, 2008, pp. 588-598. (doi: http://dx.doi.org/10,1016/(ASCE)0899-1561(2008)20:9 (588))   DOI   ScienceOn
4 Mandel, J., Wei, S., and Said, S., "Studies of the Properties of the Fiber-Matrix Interface in Steel Fiber Reinforced Mortar," ACI Materials Journal, Vol. 84, 1987, pp. 101-109.
5 Lee, H. H. and Lee, H. J., "Characteristic Strength and Deformation of SFRC Considering Steel Fiber Factor and Volume Fraction," Journal of the Korea Concrete Institute, Vol. 16, No. 6, 2004, pp. 759-766.   과학기술학회마을   DOI   ScienceOn
6 Stang, H. and Shah, S. P., "Failure of Fiber-Reinforced Composites by Pull-out Fracture," Journal of Materials Science, Vol. 21, 1986, pp. 953-957.   DOI
7 Li, V. C., Wu, C., Wang, S., Ogawa, A., and Saito, T., "Interface Tailoring for Strain-Hardening Polyvinyl Alcohol- Engineered Cementitious Composites (PVA-ECC)," ACI Materials Journal, Vol. 99, No. 5, 2002, pp. 463-472.
8 Kim, D. J., "Influence of Number of Twist on Tensile Behavior of High Performance Fiber Reinforced Cementitious Composites with Twisted Steel Fibers," Journal of the Korea Concrete Institute, Vol. 22, No. 4, 2010, pp. 575-583. (doi: http://dx.doi.org/10.4334/JKCI.2010.22.4.575)   DOI   ScienceOn
9 Kim, M. H., Kim, J. M., and Nam, S. I., "An Experimental Study on the Development and Application of Steel Fiber Reinforced Concrete," Journal of the Korea Concrete Institute, Vol. 6, No. 1, 1994, pp. 142-151.   과학기술학회마을
10 Morton, J. and Groves, G. W., "The Cracking of Composites Consisting of Discontinuous Reinforced Concrete," Journal of Material Science, Vol. 9, No. 9, 1974, pp. 1436-1445.   DOI
11 Ezeldin, A. S. and Balaguru, B. N., "Bond Behavior of Normal and High-Strength Fiber Reinforced Concrete," ACI Materials Journal, Vol. 86, No. 5, 1989, pp. 515-524.
12 Shannag, M. J., Brincker, R., and Hansen, W., "Interfacial (Fiber-Matrix) Properties of High-Strength Mortar (150 MPa) from Fiber Pullout," ACI Materials Journal, Vol. 93, No. 5, 1996, pp. 1-7.
13 Shannag, M. J., Brincker, R., and Hansen, W., "Pullout Behavior of Steel Fibers from Cement-Based Composites," Cement and Concrete Research, Vol. 27, No. 6, 1997, pp. 925-936.   DOI   ScienceOn
14 Lee, Y., Kang, S. T., and Kim, J. K., "Pullout Behavior of Inclined Steel Fiber in an Ultra-High Strength Cementitious Matrix," Construction and Building Materials, Vol. 24, No. 10, 2010, pp. 2030-2041. (doi: http://dx.doi.org/10.1016/ j.conbuildmat.2010.03.009)   DOI   ScienceOn
15 Orange, G., Acker, P., and Vernet, C., "A New Generation of UHP Concrete: Ductal Damage Resistance and Micromechanical Analysis," Proceedings of Third International Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC3), Mainz, Germany, 1999, pp. 101-111.
16 Nammur, G. G. and Naaman, A. E., "A Bond Stress Model for Fiber Reinforced Concrete Based on Bond Stress Slip Relationship," ACI Materials Journal Vol. 86, No. 1, 1989, pp. 45-57.
17 Lin, Z., Kanda, T., and Li V. C., "On Interface Property Characterization and Performance of Fiber-Reinforced Cementitious Composites," Concrete Science and Engineering, Vol. 1, 1999, pp. 173-174.
18 Gray, R. J., "Experimental Techniques for Measuring Fibre/Matrix Interfacial Bond Shear Strength," Testing, Evaluation and Quality Control of Composites, Butterworth Scientific Ltd. UK, 1983, pp. 3-11.
19 Armelin, H. S. and Banthia, N., "Predicting the Flexural Postcracking Performance of Steel Fiber Reinforced Concrete from the Pullout of Single Fibers," ACI Materials Journal, Vol. 94, No. 1, 1997, pp. 18-31.
20 Chan, Y. W. and Chu, S. H., "Effect of Silica Fume on Steel Fiber Bond Characteristics in Reactive Powder Concrete," Cement and Concrete Research, Vol. 34, 2004, pp. 1167-1172. (doi: http://dx.doi.org/doi: 10.1016/j.cemconres.2003.12.023)   DOI   ScienceOn
21 Park, J. J., Koh, K. T., Kang, S. T., and Kim, S. W., "Influence of Constitute Factor on the Compressive Strength of Ultra-High Strength Steel Fiber Reinforced Cementitious Composites," Journal of the Korea Concrete Institute, Vol. 17, No. 1, 2005, pp. 35-41.   DOI   ScienceOn