• 제목/요약/키워드: 인공지능 플랫폼

검색결과 365건 처리시간 0.024초

머신러닝을 위한 의료영상기반 학습 데이터 지원 플랫폼 구축 및 근감소증 데이터 AI 응용 (Construction of Medical Image-Based Learning Data Support Platform for Machine Learning and Its Application of Sarcopenia Data AI)

  • 김지언;임동욱;유영주;노시형;이충섭;김태훈;정창원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.434-436
    • /
    • 2021
  • 의료산업은 진단 및 치료 위주의 기술개발이 진행되어왔다. 최근 의료 빅데이터를 기반으로 진단, 치료 및 재활뿐만 아니라 예방과 예후관리까지 지원하는 의료서비스에 대한 패러다임이 변화되고 있다. 특히, 여러 의료 중심의 플랫폼 기술 가운데 객관적인 진단지표를 가지고 있는 의료영상을 기반으로 인공지능 학습에 적용하여 진단 및 예측을 중심으로 한 플랫폼 개발이 진행되고 있다. 하지만, 인공지능 연구에는 많은 학습 데이터가 요구될 뿐만 아니라 학습에 적용하기 위해서는 데이터 특성에 따른 전처리 기술과 분류 작업에 많은 시간 소요되어 이와 같은 문제점을 해결할 수 있는 방법들이 요구되고 있다. 따라서, 본 논문은 인공지능 학습까지 적용하기 위한 의료영상 데이터에 대한 확장 모델을 개발하여 공통적인 조건에 따라 의료영상 데이터가 표준화되어 변환하며, 자동화 시스템 구조에 따라 데이터가 분류·저장되어 인공지능 학습까지 지원할 수 있는 플랫폼을 제안하고자 한다. 그리고 근감소증 학습데이터 관리 및 적용 결과를 통해 플랫폼의 수행성을 검증하였다. 향후 제안한 플랫폼을 통해 의료데이터에 대한 전처리, 분류, 관리까지 지원함으로써 CDM 확장 표준 의료데이터 플랫폼으로 활용 가능성을 보였다.

보건의료 AI 플랫폼의 IoB 기반 시나리오 적용 (IoB Based Scenario Application of Health and Medical AI Platform)

  • 임은섭
    • 한국전자통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.1283-1292
    • /
    • 2022
  • 현재 보건의료 분야에서 여러 인공지능 프로젝트가 서로 경쟁하고 있어서 시스템 간 인터페이스의 통일된 사양이 부족한 상황이다. 이에 본 연구에서는 보건의료 부문 관련 응용 알고리즘, 모델 및 서비스 지원을 제공할 수 있는 하나의 보건의료 인공지능 서비스 플랫폼을 제안한다. 제안된 플랫폼은 다수의 이기종 데이터 처리, 지능형 서비스, 모델 관리, 일반 응용 시나리오 및 다양한 수준의 비즈니스를 위한 기타 서비스를 제공할 수 있다. 플랫폼 적용과 관련해서 최근 대두되고 있는 행위 인터넷 개념을 바탕으로 보건의료 분야의 사물 인터넷 서비스 관련 환자 행위 분석을 통해 보건의료 소비 행위에 대해 신뢰할 수 있고, 이해 가능한 추적 및 분석 시나리오를 나타낸다.

다기관 임상연구를 위한 인공지능 학습 플랫폼 구축 (Construction of Artificial Intelligence Training Platform for Multi-Center Clinical Research)

  • 이충섭;김지언;노시형;김태훈;윤권하;정창원
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권10호
    • /
    • pp.239-246
    • /
    • 2020
  • 인공지능 기술을 도입한 의료분야에서 진단 및 예측과 연계한 임상의사결정지원 시스템(CDSS)에 관련된 연구가 활발하게 진행되고 있다. 특히, 인공지능 기술 적용에 가장 많은 이슈를 일으키고 있는 의료영상기반의 질환진단연구가 다양한 제품으로 출시되고 있는 실정이다. 그러나 의료영상 데이터는 일관되지 않은 데이터들로 이루어져 있으며, 그것을 정제하여 연구에 사용하기 위해서는 상당한 시간이 필요한 것이 현실이다. 본 논문은 의료영상 표준인 R_CDM(Radiology Common Data Model)으로 변환하고, 그 데이터를 기반으로 인공지능 알고리즘 개발 연구를 지원하기위한 원스톱 인공지능학습 플랫폼에 대하여 기술한다. 이를 위해 기존 공통데이터모델(CDM : Common Data Model)과 연계에 중점을 두어 DICOM(Digital Imaging and Communications in Medicine) 태그정보를 기반으로 의료영상 표준 모델의 스키마와 다기관 연구를 위한 Report 정보를 포함하여 시스템을 모델링하였다. 이렇게 변환된 데이터 집합을 기반으로 인공지능 학습 플랫폼에서 수행 과정을 결과로 보인다. 제안한 플랫폼을 통해 다양한 영상기반 인공지능 연구에 활용될 것으로 기대하고 있다.

인공지능 플랫폼의 지각된 가치에 영향을 미치는 요인 연구 - 신약 연구 분야를 중심으로 (A Study on the Factors Influencing the Perceived Value of Artificial Intelligence Platform - Focusing on Drug Discovery Fields)

  • 김영대;이원석;김지영;신용태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.245-248
    • /
    • 2021
  • 전통적인 신약개발은 평균 15년, 2~3조원의 비용이 소요되나 투자 대비 생산성이 지속적으로 감소하고 있어 패러다임 전환이 절실한 상황이다. 인공지능 기술을 활용하면 기간과 비용의 절감효과와 신약 후보물질 탐색의 성공확률이 높아질 것을 기대할 수 있다. 본 연구는 신약 연구 분야를 중심으로 인공지능 플랫폼 도입에 있어서 플랫폼의 가치에 영향을 미치는 요인들을 분석하여 수용 및 확산을 촉진하는데 필요한 시사점을 도출하고자 한다.

AIoT 피지컬 컴퓨팅 교육을 위한 파이썬 블록 코딩 플랫폼 설계 (Design of Python Block Coding Platform for AIoT Physical Computing Education)

  • 이세훈;김수민;김영호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.1-2
    • /
    • 2022
  • 본 논문은 4차 산업혁명의 핵심기술인 인공지능과 IoT를 피지컬 컴퓨팅을 이용해 교육을 할 수 있는 플랫폼을 설계하였다. 플랫폼은 파이썬 비주얼 블록 프로그래밍을 기반으로 사용자의 코딩 언어의 구문적인 어려움을 감소시키며 데이터 분석과 머신러닝을 쉽게 응용할 수 있다. 피지컬 컴퓨팅을 위한 AIoT 타겟 보드로는 라즈베리파이를 활용하였으며 타겟보드의 하드웨어에 대한 선수 지식을 최소화해서 원하는 시스템을 개발할 수 있다. 응용에서는 센서로 수집한 데이터를 분석하고 인공지능 모델 생성을 할 수 있으며 학습된 모델을 액추에이터 제어에 활용하는 등 AIoT 피지컬 컴퓨팅 교육에 여러 장벽을 낮추었다.

  • PDF

AiMind: AI 체험 및 피지컬컴퓨팅 교육 플랫폼 (AiMind: AI Experience and Physical Computing Education Platform)

  • 이세훈;김기태;윤재광;강도형;김영호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.395-396
    • /
    • 2023
  • 본 논문에서는 디지털 전환 시대에 모든 사람들이 인공지능(AI) 체험부터 피지컬컴퓨팅을 통해서 SW·AI 융합해 아이디어를 쉽게 구현하고 교육 받을 수 있는 플랫폼을 구현하였다. AI 체험을 위해 P5.js와 텐서플로우에 기반한 ML5.js 라이브러리를 이용해 블록 코딩을 할 수 있도록 하였다. 또한 피지컬컴퓨팅에서는 마이크로비트와 아두이노, 라즈베리파이 등을 WebUSB를 통해서 PC와 연결하고 플랫폼에서 인공지능의 다양한 서비스와 융합시킬 수 있도록 제공한다.

  • PDF

P2P 플랫폼에서의 대출자 신용분석 사례연구: 8퍼센트, 렌딧, 어니스트 펀드 (A Case Study on Credit Analysis System in P2P: 8Percent, Lendit, Honest Fund)

  • 최수만;전동화;오경주
    • 지식경영연구
    • /
    • 제21권3호
    • /
    • pp.229-247
    • /
    • 2020
  • 지식경영 분야의 P2P금융 플랫폼의 성장속에서 빅데이터 및 머신러닝(Machine Learning) 기술을 보유한 회사만이 치열한 경쟁 속에서 생존할 가능성이 높을 것으로 예상된다. 그럼에도 불구하고 관련 서비스를 제공하는 온라인 P2P대출 플랫폼 업체들은 투자자와 대출을 신청하는 중개자로서의 역할을 수행할 뿐이며 투자와 관련된 위험은 모두 투자자에게 귀속시키고 있다. 이러한 이유로, 투자자 입장에서는 투자상품의 안전성을 확인할 수 있는 유일한 방법이 신문이나 온라인 웹사이트를 통한 P2P대출 플랫폼 업체의 평판에만 의존할 수 밖에 없는 실정이다. 또한, 한국의 P2P대출 플랫폼 업체들이 대출자의 개별 신용분석을 체계적으로 실시하여 연체율 등의 시계열 정보를 정확히 파악하기에는 시간적, 경제적 여건이 매우 열악한 상황이다. 그러나, 최근 몇몇 P2P대출 플랫폼 업체들이 업체별 대출자 신용분석에 대한 역량을 가장 중요한 영업자산으로 인식함으로써 빅데이터 및 머신러닝 기술을 바탕으로 인공지능(AI)에 기반한 새로운 신용평가 시스템을 구축하고 시행에 들어가고 있음은 매우 긍정적으로 평가된다. 따라서, 본 연구에서는 신용대출 시장에 주력하고 있으며 인공지능 활용으로 잘 알려진 상위 3개 업체를 대상으로 사례분석 방식을 통해 인공지능을 활용한 대출자 신용분석 절차 및 사용하는 정보 데이터의 종류 등을 분석하고자 한다. 이를 통하여 현 상황에서 P2P 플랫폼 업체들의 인공지능을 통한 신용분석 기법을 이해하고 현 시점에서 국내 인공지능을 활용한 신용분석 방식의 한계점과 개선방안 등을 함께 고찰하고자 한다.

재난심리회복지원플랫폼 기술 연구 (Research on Disaster Psychological Recovery Support Platform Technology)

  • 오승훈;손동훈;유홍연;전은경;윤심권;양지원;임권섭
    • 전자통신동향분석
    • /
    • 제37권5호
    • /
    • pp.33-43
    • /
    • 2022
  • We evaluated the problems of the current disaster psychological recovery support system of the Ministry of Interior and Safety for periodic infectious disease disasters, including COVID-19 (coronavirus disease 2019). The current disaster psychological recovery support systems are challenging to preemptively respond to infectious disease disasters over a wide range and for a long period. These result from the workforce shortage according to the face-to-face consultation method and the limited real-time application of consultation contents. Additionally, due to the workforce shortage, it is difficult to track those who have experienced disasters in the long term. Furthermore, most disaster psychology evaluation tools are for adults, and there are few evaluation tools for children and adolescents. This paper presents an advanced disaster psychological recovery support platform technology that can actively assist people in psychological recovery from disasters while mitigating these issues.

인공지능이 적용된 온라인 구인정보 플랫폼의 품질 및 선호가 지속사용의도에 미치는 영향에 관한 탐색적 연구 (An Exploratory Study on Artificial Intelligence Quality, Preference and Continuous Usage Intention: A Case of Online Job Information Platform)

  • 안경민;이영찬
    • 디지털융복합연구
    • /
    • 제17권7호
    • /
    • pp.73-87
    • /
    • 2019
  • 본 연구는 최근 빠르게 확산되는 인공지능의 지속적인수용에 관하여 탐색하고자 온라인 구인정보 플랫폼에 적용된 인공지능의 품질을 정의하고 인공지능의 선호, 지속사용의도 간의 구조적인 관계를 규명하였다. 인공지능 사용자를 대상으로 설문조사를 시행하였고 184개를 회수하였다. 실증분석결과 인공지능의 품질과 선호가 만족에 긍정적인 영향을 미치며, 인공지능의 만족이 지속사용의도에 통계적으로 유의한 수준에서 긍정적인 영향을 미치는 것으로 나타났다. 그러나 예상과는 달리 인공지능의 품질은 지속사용의도에 유의한 영향을 미치지 않는 것으로 나타났다. 이와 같은 결과는 향후 인공지능 기술을 제품이나 서비스에 적용하는데 있어 이론적, 실무적인 차원의 유용한 가이드라인을 제시할 수 있을 것으로 기대한다.