앞으로의 시대는 인공지능을 이용한 다양한 분야에 다양한 제품이2 생성될 것이다. 이러한 시대에 인공지능의 학습 방법의 동작 원리를 알고 이를 정확하게 활용하는 것은 상당히 중요한 문제이다. 이 논문은 지금까지 알려진 인공지능 학습 방법을 소개한다. 인공지능의 학습은 수학의 고정점 반복 방법(fixed point iteration method)을 기반으로 하고 있다. 이 방법을 기반으로 수렴 속도를 조절한 GD(Gradient Descent) 방법, 그리고 쌓여가는 양을 누적하는 Momentum 방법, 마지막으로 이러한 방법을 적절히 혼합한 Adam(Adaptive Moment Estimation) 방법 등이 있다. 이 논문에서는 각 방법의 장단점을 설명한다. 특히, Adam 방법은 조정 능력을 포함하고 있어 기계학습의 강도를 조정할 수 있다. 그리고 이러한 방법들이 디지털 신호에 어떠한 영향을 미치는 지에 대하여 분석한다. 이러한 디지털 신호의 학습과정에서의 변화는 앞으로 인공지능을 이용한 작업 및 연구를 수행함에 있어 정확한 활용과 정확한 판단의 기준이 될 것이다.
2018 년 Google 사의 사전 학습된 언어 인공지능 BERT 를 기점으로, 자연어 처리 학계는 주요 구조를 유지한 채 경쟁적으로 모델을 대형화하는 방향으로 발전했다. 그 결과, 오늘날 자연어 인공지능은 거대 사기업과 그에 준하는 컴퓨팅 자원을 소유한 연구 단체만의 전유물이 되었다. 본 논문에서는 다층 퍼셉트론을 병렬적으로 배열해 자연어 인공지능을 제작하는 기법의 모델을 제안하고, 이를 적용한'조건부 게이트 다층 퍼셉트론 모델(SG-MLP)'을 구현하고 그 결과를 비교 관찰하였다. SG-MLP 는 BERT 의 20%에 해당하는 사전 학습량만으로 다수의 지표에서 그것과 준하는 성능을 보였고, 동일한 과제에 대해 더 적은 연산 비용을 소요한다.
인공지능 기반의 수학 디지털교과서의 가장 핵심적인 기능으로 여겨지는 개별 맞춤형 교수·학습이 실현되기 위해서는 개별 학생의 여러 가지 특성 요인에 대한 명확한 분석과 진단이 가장 관건이다. 본 연구에서는 수학 AI 디지털교과서에서 개별 맞춤형 학습 진단을 위한 분석 요인과 도구, 데이터 수집·분석을 위한 구축 모델을 도출하였다. 이를 위하여 최근 교육부의 AI 디지털교과서 적용 계획에 따른 수학 AI 디지털교과서에 대한 요구, 개별화 맞춤형 학습과 이를 위한 데이터에 대한 선행 연구, 수학 디지털플랫폼에서 학습자 분석에 대한 요인 등이 검토되었다. 연구 결과, 연구자는 학생 개인별로 수집해야 할 데이터로 학습 분석을 위한 요인으로 학습 준비도, 과정 및 수행도, 성취도, 취약점, 성향 분석을 위한 요인으로 학습 지속 시간, 문제해결에 걸린 시간, 집중도, 수학학습 습관, 정서 분석을 위한 요인으로 자신감, 흥미, 불안, 학습의욕, 가치 인식, 태도 분석을 위한 요인으로 자기 관리, 학습 전략으로 정리하였다. 또한, 이러한 요인에 대한 데이터 수집 도구로, 문제에 대한 정오 데이터, 학습 진도율, 학생 활동에 대한 화면 녹화 자료, 이벤트 데이터, 시선 추적 장치, 자기 응답 설문 등을 제안하였다. 최종적으로 이러한 요인들을 학습 전, 중, 후로 시계열화한 데이터 수집 모델이 제안되었다.
학교 현장과 대규모 평가에서 서술형 문항 도입을 지원하기 위한 방안 중 하나로 인공지능 기반의 자동 채점 기술이 주목받고 있음에도 불구하고, 수학 교과에서는 타 교과에 비해 이에 대한 기초 연구가 부족한 상황이다. 이에 본 연구는 중학교 1학년 수학 서술형 문항 두 개를 대상으로 랜덤 포레스트 알고리즘을 활용하여 자동 채점 모델을 개발하고 그 성능을 평가하였다. 연구 결과, 두 문항에 대한 최종 모델의 평가요소별 정확도는 각각 0.95-1.00, 0.73-0.89의 범위로 나타났으며, 이는 타 교과에 비해 상대적으로 높은 수준이다. 데이터의 양을 고려한 평가 범주 설정의 중요성을 확인하였으며, 수학 교육전문가에 의한 텍스트 전처리와 데이터 특성에 맞는 벡터화 방법의 선택이 모델의 성능 및 해석 가능성을 향상시키는 데 기여하였다. 또한, 현실적 한계로 인해 균형적인 데이터 수집이 어려운 상황에서 오버샘플링이 성능을 보완하는 유용한 방법임을 확인하였다. 교육적 활용도를 높이기 위해, 랜덤 포레스트 기반 모델에서 도출된 특성 중요도를 활용하여 피드백과 같이 교수-학습에 유용한 정보를 생성하는 추가 연구가 필요하다. 본 연구는 수학 서술형 자동 채점에 관한 기초 연구로서 의미가 있으며, 인공지능 전문가와 수학교육 전문가 간의 긴밀한 협력을 통해 다양한 후속 연구가 진행될 필요가 있다.
최근 인공지능의 다양한 활용은 기계학습의 딥 인공신경망 구조를 통해 가능해졌으며 인간과 같은 능력을 보여주고 있다. 불행하게도 딥 구조의 인공신경망은 아직 정확한 해석이 이루어지고 있지 못하고 있다. 이러한 부분은 인공지능에 대한 불안감과 거부감으로 작용하고 있다. 우리는 이러한 문제 중에서 인공신경망의 능력 부분을 해결한다. 인공신경망 구조의 크기를 계산하고, 그 인공신경망이 처리할 수 있는 데이터의 크기를 계산해 본다. 계산의 방법은 수학에서 쓰이는 군의 방법을 사용하여 데이터와 인공신경망의 크기를 군의 구조와 크기를 알 수 있는 Order를 이용하여 계산한다. 이를 통하여 인공신경망의 능력을 알 수 있으며, 인공지능에 대한 불안감을 해소할 수 있다. 수치적 실험을 통하여 데이터의 크기와 딥 인공신경망을 계산하고 이를 검증한다.
공작기계의 자동화에 적용되는 ACO, ACC 및 GAC 등에 대한 원리와 이용방안 그리고 연구개발 되어져야 할 점들에 대하여 수학적인 논술을 피하고 그 기본개념 등을 소개하였다. 궁극적인 자동화의 목표가 공작기계에 인공지능을 부여하여 경험이 없는 작업자라고 하더라도 생산공정을 관리 감독할 수 있도록 하기 위하여는 지능있는 공작기계의 개발이 이루어져야 하겠다. 지능 있는 공작기계의 개발시 고려되어져야 할 사항들을 고찰해 볼 때 공작기계의 ACO, ACC 및 GAC 등에 대한 연구개발에 앞서 절삭공정매카니즘 그 자체의 연구개발은 물론 절삭상황을 실 시간으로 측정 및 인식 할 수 있는 측정장치들에 대한 연구들이 선행되어져야 할 것이고, 선진국 대열에 들어서기 위해서는 공작기계 산업에 대한 육성은 물론 연구개발에 집중적인 투자가 이 루어져야 하겠다.
신종 코로나바이러스(COVID-19)로 인한 비대면(Untact, 비접촉) 대학수학교육에서 적절하고 공정한 평가에 대한 문제가 제기되고 있다. 이를 위해 본 연구진은 2020년 여름 S대학에서 진행한 도전학기에서 '인공지능을 위한 기초수학' 강좌를 운영하면서 평가의 공정성을 보장하면서도 교육의 양과 질을 향상시킬 수 있도록, 온라인과 오프라인 평가를 혼용한 과정중심 PBL(Problem/Project-Based Learning, 문제/프로젝트 기반학습) 평가를 전면적으로 도입하였다. 그 결과, 해당 강좌를 수강한 대부분의 학생들이 예외 없이 관련 지식을 폭넓게 학습했음을 확인했으며, 학습자들로부터 언택트 시대에 보통의 온라인 강좌에 적용 가능한 이상적이고 공정하며, 합리적이고 동시에 효과적인 평가방법이라는 피드백을 받았다. 본 원고에서는 과정중심 PBL 평가 사례를 구체적으로 증빙과 함께 소개한다.
Kim, Han Sung;Kim, Doohyun;Kim, Sang Il;Lee, Won Joo
한국컴퓨터정보학회논문지
/
제27권3호
/
pp.25-31
/
2022
본 연구의 목적은 국내 대학의 인공지능(AI) 전공 교육과정에 대한 실태 분석을 통해 향후, 더욱 체계적인 AI 교육과정 운영을 위한 시사점을 탐색하는 것에 있다. 이를 위해, 사전 연구를 통해 개발한 산업계 수요 기반의 대학 AI 전공 표준형 교육과정을 활용해 국내 대학(SW중심대학 외 총 51개교)과 해외 QS Top 10 대학의 관련 교육과정을 분석하였다. 주요 연구 결과를 살펴보면 다음과 같다. 첫째, 국내 대학의 경우 파이썬 중심의 프로그래밍 과목이 부족하였다. 둘째, AI 응용, 융합 등의 심화학습을 위한 과목이 적었다. 셋째, AI 개발자 직무를 수행하기 위해 요구되는 과목(ex, 컨테이너 인프라 구축, DevOps 실습 등)의 과목이 부족하였다. 넷째, 전문대학의 경우 AI 수학 관련 교과 개설 비율이 낮았다. 본 연구는 이러한 결과를 토대로 향후 체계적인 AI 전공 교육과정 운영을 위한 시사점을 제시하였다.
오늘날 4차 산업혁명 시대에서 교육 패러다임의 급격한 변화로 인공지능(이하 AI) 교육이 점점 더 강조되고 있다. 2022 개정 교육과정은 미래사회에서 필요한 기초소양과 역량을 함양할 수 있는 AI 교육을 제시하고 있다. 본 연구에서는 초·중등학교 AI 교육에서 컴퓨팅 사고력 및 수학적 사고력 향상을 위해 다음과 같이 제언하고자 한다. 첫째, 컴퓨팅 사고력 교육 측면에서 학생들이 AI 개념과 원리를 잘 이해하고 실생활의 문제해결을 위한 능력을 키울 수 있는 교수 원리 연구가 필요하다. 둘째, AI를 이해하기 위한 수학적 사고력 측면의 요소로서 학생들이 수식을 이용한 알고리즘과 컴퓨터가 인간처럼 사고하는 과정에서 이루어지는 학습원리를 습득할 수 있는 교육 프로그램이 요구된다. 향후 연구 과제로 교수자와 학습자의 관계에서 나올 수 있는 역량있는 학습 효과성 분석을 통한 기대치에 관한 연구에 대하여 제시하였다.
본 연구의 목적은 최근 초중등 교육에 도입되고 있는 인공지능 교육의 목적, 내용, 방법 등을 교육과정의 측면과 교사교육에 필요한 요인 측면을 조사하고 분석하여 우리나라 초중등 인공지능 교육의 방향을 제안하는 것이다. 1차 문헌으로는 국내외 논문 9편, 2차 문헌으로는 11편의 국내외 정책 보고서를 수집하고 분석하였다. 수집된 문헌을 서술적 고찰방법을 적용하여 분석하였으며, 문헌의 다각도 분석을 위해 교육과정 구성요소 측면과 TPACK 요소 측면에서 분석하여 시사점을 도출하였다. 본 연구의 결과로 인공지능 교육 대상을 인공지능 사용자, 활용자, 개발자의 3단계로 구분하였다. 초중등 인공지능 교육에서는 사용자와 활용자 단계가 적합하고, 사용자 교육을 위해 인공지능 리터러시를 포함해야 한다. 활용자 교육을 위해 현재의 컴퓨팅 사고력 및 코딩 역량을 기반으로 하여 인공지능의 기능을 적용하여 창의적인 산출물을 만들어 낼 수 있는 역량을 목표로 삼는 것이 필요하다는 시사점을 도출하였다. 또한, 교사는 교수 지식 및 플랫폼 사용 능력 외에도 문제해결, 추론, 학습, 인식 영역 및 일부 응용수학, 인지/심리학/윤리에 대한 내용 지식이 필요하므로 이에 대한 연수가 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.