• 제목/요약/키워드: 인공지능 수학

검색결과 132건 처리시간 0.026초

인공지능 기계학습 방법 비교와 학습을 통한 디지털 신호변화 (Digital signal change through artificial intelligence machine learning method comparison and learning)

  • 이덕균;박지은
    • 디지털융복합연구
    • /
    • 제17권10호
    • /
    • pp.251-258
    • /
    • 2019
  • 앞으로의 시대는 인공지능을 이용한 다양한 분야에 다양한 제품이2 생성될 것이다. 이러한 시대에 인공지능의 학습 방법의 동작 원리를 알고 이를 정확하게 활용하는 것은 상당히 중요한 문제이다. 이 논문은 지금까지 알려진 인공지능 학습 방법을 소개한다. 인공지능의 학습은 수학의 고정점 반복 방법(fixed point iteration method)을 기반으로 하고 있다. 이 방법을 기반으로 수렴 속도를 조절한 GD(Gradient Descent) 방법, 그리고 쌓여가는 양을 누적하는 Momentum 방법, 마지막으로 이러한 방법을 적절히 혼합한 Adam(Adaptive Moment Estimation) 방법 등이 있다. 이 논문에서는 각 방법의 장단점을 설명한다. 특히, Adam 방법은 조정 능력을 포함하고 있어 기계학습의 강도를 조정할 수 있다. 그리고 이러한 방법들이 디지털 신호에 어떠한 영향을 미치는 지에 대하여 분석한다. 이러한 디지털 신호의 학습과정에서의 변화는 앞으로 인공지능을 이용한 작업 및 연구를 수행함에 있어 정확한 활용과 정확한 판단의 기준이 될 것이다.

자연어 처리를 위한 조건부 게이트 다층 퍼셉트론 모델 개발 및 구현 (SG-MLP: Switch Gated Multi-Layer Perceptron Model for Natural Language Understanding)

  • 손규진;김승원;주세준;조우진;나정은
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.1116-1119
    • /
    • 2021
  • 2018 년 Google 사의 사전 학습된 언어 인공지능 BERT 를 기점으로, 자연어 처리 학계는 주요 구조를 유지한 채 경쟁적으로 모델을 대형화하는 방향으로 발전했다. 그 결과, 오늘날 자연어 인공지능은 거대 사기업과 그에 준하는 컴퓨팅 자원을 소유한 연구 단체만의 전유물이 되었다. 본 논문에서는 다층 퍼셉트론을 병렬적으로 배열해 자연어 인공지능을 제작하는 기법의 모델을 제안하고, 이를 적용한'조건부 게이트 다층 퍼셉트론 모델(SG-MLP)'을 구현하고 그 결과를 비교 관찰하였다. SG-MLP 는 BERT 의 20%에 해당하는 사전 학습량만으로 다수의 지표에서 그것과 준하는 성능을 보였고, 동일한 과제에 대해 더 적은 연산 비용을 소요한다.

개별 맞춤형 학습을 위한 인공지능(AI) 기반 수학 디지털교과서의 학습자 데이터 구축 모델 (A Model for Constructing Learner Data in AI-based Mathematical Digital Textbooks for Individual Customized Learning)

  • 이화영
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제26권4호
    • /
    • pp.333-348
    • /
    • 2023
  • 인공지능 기반의 수학 디지털교과서의 가장 핵심적인 기능으로 여겨지는 개별 맞춤형 교수·학습이 실현되기 위해서는 개별 학생의 여러 가지 특성 요인에 대한 명확한 분석과 진단이 가장 관건이다. 본 연구에서는 수학 AI 디지털교과서에서 개별 맞춤형 학습 진단을 위한 분석 요인과 도구, 데이터 수집·분석을 위한 구축 모델을 도출하였다. 이를 위하여 최근 교육부의 AI 디지털교과서 적용 계획에 따른 수학 AI 디지털교과서에 대한 요구, 개별화 맞춤형 학습과 이를 위한 데이터에 대한 선행 연구, 수학 디지털플랫폼에서 학습자 분석에 대한 요인 등이 검토되었다. 연구 결과, 연구자는 학생 개인별로 수집해야 할 데이터로 학습 분석을 위한 요인으로 학습 준비도, 과정 및 수행도, 성취도, 취약점, 성향 분석을 위한 요인으로 학습 지속 시간, 문제해결에 걸린 시간, 집중도, 수학학습 습관, 정서 분석을 위한 요인으로 자신감, 흥미, 불안, 학습의욕, 가치 인식, 태도 분석을 위한 요인으로 자기 관리, 학습 전략으로 정리하였다. 또한, 이러한 요인에 대한 데이터 수집 도구로, 문제에 대한 정오 데이터, 학습 진도율, 학생 활동에 대한 화면 녹화 자료, 이벤트 데이터, 시선 추적 장치, 자기 응답 설문 등을 제안하였다. 최종적으로 이러한 요인들을 학습 전, 중, 후로 시계열화한 데이터 수집 모델이 제안되었다.

랜덤 포레스트 알고리즘을 활용한 수학 서술형 자동 채점 (Automatic scoring of mathematics descriptive assessment using random forest algorithm)

  • 최인용;김화경;정인우;송민호
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권2호
    • /
    • pp.165-186
    • /
    • 2024
  • 학교 현장과 대규모 평가에서 서술형 문항 도입을 지원하기 위한 방안 중 하나로 인공지능 기반의 자동 채점 기술이 주목받고 있음에도 불구하고, 수학 교과에서는 타 교과에 비해 이에 대한 기초 연구가 부족한 상황이다. 이에 본 연구는 중학교 1학년 수학 서술형 문항 두 개를 대상으로 랜덤 포레스트 알고리즘을 활용하여 자동 채점 모델을 개발하고 그 성능을 평가하였다. 연구 결과, 두 문항에 대한 최종 모델의 평가요소별 정확도는 각각 0.95-1.00, 0.73-0.89의 범위로 나타났으며, 이는 타 교과에 비해 상대적으로 높은 수준이다. 데이터의 양을 고려한 평가 범주 설정의 중요성을 확인하였으며, 수학 교육전문가에 의한 텍스트 전처리와 데이터 특성에 맞는 벡터화 방법의 선택이 모델의 성능 및 해석 가능성을 향상시키는 데 기여하였다. 또한, 현실적 한계로 인해 균형적인 데이터 수집이 어려운 상황에서 오버샘플링이 성능을 보완하는 유용한 방법임을 확인하였다. 교육적 활용도를 높이기 위해, 랜덤 포레스트 기반 모델에서 도출된 특성 중요도를 활용하여 피드백과 같이 교수-학습에 유용한 정보를 생성하는 추가 연구가 필요하다. 본 연구는 수학 서술형 자동 채점에 관한 기초 연구로서 의미가 있으며, 인공지능 전문가와 수학교육 전문가 간의 긴밀한 협력을 통해 다양한 후속 연구가 진행될 필요가 있다.

데이터와 인공신경망 능력 계산 (Calculating Data and Artificial Neural Network Capability)

  • 이덕균;박지은
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.49-57
    • /
    • 2022
  • 최근 인공지능의 다양한 활용은 기계학습의 딥 인공신경망 구조를 통해 가능해졌으며 인간과 같은 능력을 보여주고 있다. 불행하게도 딥 구조의 인공신경망은 아직 정확한 해석이 이루어지고 있지 못하고 있다. 이러한 부분은 인공지능에 대한 불안감과 거부감으로 작용하고 있다. 우리는 이러한 문제 중에서 인공신경망의 능력 부분을 해결한다. 인공신경망 구조의 크기를 계산하고, 그 인공신경망이 처리할 수 있는 데이터의 크기를 계산해 본다. 계산의 방법은 수학에서 쓰이는 군의 방법을 사용하여 데이터와 인공신경망의 크기를 군의 구조와 크기를 알 수 있는 Order를 이용하여 계산한다. 이를 통하여 인공신경망의 능력을 알 수 있으며, 인공지능에 대한 불안감을 해소할 수 있다. 수치적 실험을 통하여 데이터의 크기와 딥 인공신경망을 계산하고 이를 검증한다.

공작기계 자동화를 위한 적응제어 기술의 개발동향

  • 정성종
    • 기계저널
    • /
    • 제28권3호
    • /
    • pp.226-234
    • /
    • 1988
  • 공작기계의 자동화에 적용되는 ACO, ACC 및 GAC 등에 대한 원리와 이용방안 그리고 연구개발 되어져야 할 점들에 대하여 수학적인 논술을 피하고 그 기본개념 등을 소개하였다. 궁극적인 자동화의 목표가 공작기계에 인공지능을 부여하여 경험이 없는 작업자라고 하더라도 생산공정을 관리 감독할 수 있도록 하기 위하여는 지능있는 공작기계의 개발이 이루어져야 하겠다. 지능 있는 공작기계의 개발시 고려되어져야 할 사항들을 고찰해 볼 때 공작기계의 ACO, ACC 및 GAC 등에 대한 연구개발에 앞서 절삭공정매카니즘 그 자체의 연구개발은 물론 절삭상황을 실 시간으로 측정 및 인식 할 수 있는 측정장치들에 대한 연구들이 선행되어져야 할 것이고, 선진국 대열에 들어서기 위해서는 공작기계 산업에 대한 육성은 물론 연구개발에 집중적인 투자가 이 루어져야 하겠다.

  • PDF

뉴노멀(New Normal) 시대 대학수학교육에서의 과정중심 PBL 평가 - '인공지능을 위한 기초수학' 강좌 사례를 중심으로 - (A Study on Evaluation in College Mathematics Education in the New Normal Era)

  • 이상구;함윤미;이재화
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제34권4호
    • /
    • pp.421-437
    • /
    • 2020
  • 신종 코로나바이러스(COVID-19)로 인한 비대면(Untact, 비접촉) 대학수학교육에서 적절하고 공정한 평가에 대한 문제가 제기되고 있다. 이를 위해 본 연구진은 2020년 여름 S대학에서 진행한 도전학기에서 '인공지능을 위한 기초수학' 강좌를 운영하면서 평가의 공정성을 보장하면서도 교육의 양과 질을 향상시킬 수 있도록, 온라인과 오프라인 평가를 혼용한 과정중심 PBL(Problem/Project-Based Learning, 문제/프로젝트 기반학습) 평가를 전면적으로 도입하였다. 그 결과, 해당 강좌를 수강한 대부분의 학생들이 예외 없이 관련 지식을 폭넓게 학습했음을 확인했으며, 학습자들로부터 언택트 시대에 보통의 온라인 강좌에 적용 가능한 이상적이고 공정하며, 합리적이고 동시에 효과적인 평가방법이라는 피드백을 받았다. 본 원고에서는 과정중심 PBL 평가 사례를 구체적으로 증빙과 함께 소개한다.

Analysis of the Current Status of the AI Major Curriculum at Universities Based on Standard of AI Curriculum

  • Kim, Han Sung;Kim, Doohyun;Kim, Sang Il;Lee, Won Joo
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권3호
    • /
    • pp.25-31
    • /
    • 2022
  • 본 연구의 목적은 국내 대학의 인공지능(AI) 전공 교육과정에 대한 실태 분석을 통해 향후, 더욱 체계적인 AI 교육과정 운영을 위한 시사점을 탐색하는 것에 있다. 이를 위해, 사전 연구를 통해 개발한 산업계 수요 기반의 대학 AI 전공 표준형 교육과정을 활용해 국내 대학(SW중심대학 외 총 51개교)과 해외 QS Top 10 대학의 관련 교육과정을 분석하였다. 주요 연구 결과를 살펴보면 다음과 같다. 첫째, 국내 대학의 경우 파이썬 중심의 프로그래밍 과목이 부족하였다. 둘째, AI 응용, 융합 등의 심화학습을 위한 과목이 적었다. 셋째, AI 개발자 직무를 수행하기 위해 요구되는 과목(ex, 컨테이너 인프라 구축, DevOps 실습 등)의 과목이 부족하였다. 넷째, 전문대학의 경우 AI 수학 관련 교과 개설 비율이 낮았다. 본 연구는 이러한 결과를 토대로 향후 체계적인 AI 전공 교육과정 운영을 위한 시사점을 제시하였다.

초·중등 인공지능 교육에서 컴퓨팅 사고력 및 수학적 사고력 향상을 위한 제언 (Suggestions for Improving Computational Thinking and Mathematical Thinking for Artificial Intelligence Education in Elementary and Secondary School)

  • 박상우;조정원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.185-187
    • /
    • 2022
  • 오늘날 4차 산업혁명 시대에서 교육 패러다임의 급격한 변화로 인공지능(이하 AI) 교육이 점점 더 강조되고 있다. 2022 개정 교육과정은 미래사회에서 필요한 기초소양과 역량을 함양할 수 있는 AI 교육을 제시하고 있다. 본 연구에서는 초·중등학교 AI 교육에서 컴퓨팅 사고력 및 수학적 사고력 향상을 위해 다음과 같이 제언하고자 한다. 첫째, 컴퓨팅 사고력 교육 측면에서 학생들이 AI 개념과 원리를 잘 이해하고 실생활의 문제해결을 위한 능력을 키울 수 있는 교수 원리 연구가 필요하다. 둘째, AI를 이해하기 위한 수학적 사고력 측면의 요소로서 학생들이 수식을 이용한 알고리즘과 컴퓨터가 인간처럼 사고하는 과정에서 이루어지는 학습원리를 습득할 수 있는 교육 프로그램이 요구된다. 향후 연구 과제로 교수자와 학습자의 관계에서 나올 수 있는 역량있는 학습 효과성 분석을 통한 기대치에 관한 연구에 대하여 제시하였다.

  • PDF

K-12 학생 및 교사를 위한 인공지능 교육에 대한 고찰 (Review on Artificial Intelligence Education for K-12 Students and Teachers)

  • 김수환;김성훈;이민정;김현철
    • 컴퓨터교육학회논문지
    • /
    • 제23권4호
    • /
    • pp.1-11
    • /
    • 2020
  • 본 연구의 목적은 최근 초중등 교육에 도입되고 있는 인공지능 교육의 목적, 내용, 방법 등을 교육과정의 측면과 교사교육에 필요한 요인 측면을 조사하고 분석하여 우리나라 초중등 인공지능 교육의 방향을 제안하는 것이다. 1차 문헌으로는 국내외 논문 9편, 2차 문헌으로는 11편의 국내외 정책 보고서를 수집하고 분석하였다. 수집된 문헌을 서술적 고찰방법을 적용하여 분석하였으며, 문헌의 다각도 분석을 위해 교육과정 구성요소 측면과 TPACK 요소 측면에서 분석하여 시사점을 도출하였다. 본 연구의 결과로 인공지능 교육 대상을 인공지능 사용자, 활용자, 개발자의 3단계로 구분하였다. 초중등 인공지능 교육에서는 사용자와 활용자 단계가 적합하고, 사용자 교육을 위해 인공지능 리터러시를 포함해야 한다. 활용자 교육을 위해 현재의 컴퓨팅 사고력 및 코딩 역량을 기반으로 하여 인공지능의 기능을 적용하여 창의적인 산출물을 만들어 낼 수 있는 역량을 목표로 삼는 것이 필요하다는 시사점을 도출하였다. 또한, 교사는 교수 지식 및 플랫폼 사용 능력 외에도 문제해결, 추론, 학습, 인식 영역 및 일부 응용수학, 인지/심리학/윤리에 대한 내용 지식이 필요하므로 이에 대한 연수가 필요하다.