• Title/Summary/Keyword: 인공지능의 교육 활용

Search Result 422, Processing Time 0.023 seconds

Exploring the Educational Use of Artificial Intelligence based on R mapping - Focusing on Foreign Publication Analysis Results - (R 매핑을 이용한 인공지능의 교육적 활용 탐색 -국외 문헌 분석을 중심으로-)

  • Kim, Hyung-Uk;Mun, Seong-Yun
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.4
    • /
    • pp.313-325
    • /
    • 2020
  • There is a growing interest and need for the educational use of artificial intelligence as artificial intelligence technologies such as machine learning and deep learning, the core technologies of the intelligent information society, owing to the recent innovative technological advances. Consequently, the Ministry of Education announced the First Information Education Comprehensive Plan for introducing artificial intelligence competence enhancing education into the education field in preparation for the intelligent information society based on artificial intelligence technologies. Therefore, this study collected 416 overseas papers related to the educational use of artificial intelligence from the Web of Science (WoS) in order to explore the potential for using artificial intelligence educationally. This study analyzed the research status and research topic by country, citation counts, network analysis on keywords of the collected data by using the bibliometrix package of R program. Through this, it was possible to identify the research trend on the educational use of artificial intelligence, currently being conducted in foreign countries. It is believed that it will be possible to obtain implications for the topics and directions to be studied in the information education for strengthening artificial intelligence education based on the results of this study.

Development and Application of AI Education Immersion Course for school autonomous curriculum at Elementary School

  • Soo-Hwan, Lee;Jeong-Rang, Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.201-208
    • /
    • 2023
  • As the demand for AI education increases, AI education is actively conducted in the educational field, but it is difficult to internalize AI education due to securing time, difficulty in organizing class contents, and lack of curriculum. As a way to solve this problem, there is a school autonomous course. The school autonomous course allows schools to have autonomy and discretion throughout the curriculum, such as adjusting the number of hours in the subject group and restructuring the use of achievement standards. In this study, in order to enhance AI education, the effect was analyzed by developing and applying an AI education immersion course using a school autonomous curriculum. In the AI education immersion course, students continuously experience AI education in a dense manner within a limited time, so substantial AI education can be achieved. After the AI curriculum, it was found that students' overall AI literacy and self-determination learning motivation improved. It is expected that this study will be able to present a direction to internalize AI education using school autonomous curriculum.

A Study to Design the Instructional Program based on Explainable Artificial intelligence (설명가능한 인공지능기반의 인공지능 교육 프로그램 개발)

  • Park, Dabin;Shin, Seungki
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.149-157
    • /
    • 2021
  • Ahead of the introduction of artificial intelligence education into the revised curriculum in 2022, various class cases based on artificial intelligence should be developed. In this study, we designed an artificial intelligence education program based on explainable artificial intelligence using design-based research. Artificial intelligence, which covers three areas of basic, utilization, and ethics of artificial intelligence and can be easily connected to real-life cases, is set as a key topic. In general design-based studies, more than three repetitive processes are performed, but the results of this study are based on the results of the primary design, application, and evaluation. We plan to design a program on artificial intelligence that is more complete based on the third modification and supplementation by applying it to the school later. This research will help the development of artificial intelligence education introduced at school.

  • PDF

Development and Implementation of an Activity-Based AI Convergence Education Program for Elementary School Students (초등학생을 위한 활동중심 인공지능 융합 교육 프로그램 개발 및 적용)

  • Shin, Jinseon;Jo, Miheon
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.3
    • /
    • pp.437-448
    • /
    • 2021
  • As the core technology of the Fourth Industrial Revolution, AI is applied to various fields of society(e.g. politics, culture, industry, economy, etc.) and causes revolutionary changes. Students who will lead the age of AI need the ability to recognize social changes due to AI, acquire AI related knowledge and utilize AI in various situations. However, it is difficult for elementary school students to understand the concept and principles of AI. Therefore, this study developed an AI education program by selecting educational contents and methods appropriate to the level of elementary school students, and investigated the educational effects of the program by applying it to an actual educational setting. The content selected in this study is 'Social Awareness on AI', 'Understanding AI' and 'Utilizing AI', and eight content elements were selected. To help students learn AI easily and pleasantly at their level, activity-centered education, convergence of subjects and project-based learning were selected as instructional methods, and 20 sessions of education program were developed and implemented. In addition, the effects of the program were analyzed concerning 'perception on AI', 'convergent thinking', 'creative problem-solving' and 'collaboration capability', and positive changes were verified for all four aspects.

A Case Study of Artificial Intelligence Education Course for Graduate School of Education (교육대학원에서의 인공지능 교과목 운영 사례)

  • Han, Kyujung
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.673-681
    • /
    • 2021
  • This study is a case study of artificial intelligence education subjects in the graduate school of education. The main educational contents consisted of understanding and practice of machine learning, data analysis, actual artificial intelligence using Entries, artificial intelligence and physical computing. As a result of the survey on the educational effect after the application of the curriculum, it was found that the students preferred the use of the Entry AI block and the use of the Blacksmith board as a physical computing tool as the priority applied to the elementary education field. In addition, the data analysis area is effective in linking math data and graph education. As a physical computing tool, Husky Lens is useful for scalability by using image processing functions for self-driving car maker education. Suggestions for desirable AI education include training courses by level and reinforcement of data collection and analysis education.

A Case Study of Artificial Intelligence Education for Graduate School of Education (교육 대학원에서의 인공지능 교육 사례)

  • Han, Kyujung
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.401-409
    • /
    • 2021
  • This study is a case study of artificial intelligence education subjects in the graduate school of education. The main educational contents consisted of understanding and practice of machine learning, data analysis, actual artificial intelligence using Entries, artificial intelligence and physical computing. As a result of the survey on the educational effect after the application of the curriculum, it was found that the students preferred the use of the Entry AI block and the use of the Blacksmith board as a physical computing tool as the priority applied to the elementary education field. In addition, the data analysis area is effective in linking math data and graph education. As a physical computing tool, Husky Lens is useful for scalability by using image processing functions for self-driving car maker education. Suggestions for desirable AI education include training courses by level and reinforcement of data collection and analysis education.

  • PDF

Elementary School Teachers' Perceptions of Using Artificial Intelligence in Mathematics Education (수학교육에서의 인공지능 활용에 대한 초등 교사의 인식 탐색)

  • Kim, JeongWon;Kwon, Minsung;Pang, JeongSuk
    • Education of Primary School Mathematics
    • /
    • v.26 no.4
    • /
    • pp.299-316
    • /
    • 2023
  • With the importance and necessity of using AI in the field of education, this study aims to explore elementary school teachers' perceptions of using Artificial Intelligence (AI) in mathematics education. For this purpose, we conducted a survey using a 5-point Likert scale with 161 elementary school teachers and analyzed their perceptions of mathematics education with AI via four categories (i.e., Attitude of using AI, AI for teaching mathematics, AI for learning mathematics, and AI for assessing mathematics performance). As a result, elementary school teachers displayed positive perceptions of the usefulness of AI applications to teaching, learning, and assessment of mathematics. Specifically, they strongly agreed that AI could assist personalized teaching and learning, supplement prerequisite learning, and analyze the results of assessment. They also agreed that AI in mathematics education would not replace the teacher's role. The results of this study also showed that the teachers exhibited diverse perceptions ranging from negative to neutral to positive. The teachers reported that they were less confident and prepared to teach mathematics using AI, with significant differences in their perceptions depending on whether they enacted mathematics lessons with AI or received professional training courses related to AI. We discuss the implications for the role of teachers and pedagogical supports to effectively utilize AI in mathematics education.

Research of Data Collection for AI Education Using Physical Computing Tools (피지컬 교구를 이용한 인공지능 교육용 데이터 수집 연구)

  • Lee, Jaeho;Jun, Doyeon
    • Journal of Creative Information Culture
    • /
    • v.7 no.4
    • /
    • pp.265-277
    • /
    • 2021
  • Data is the core of AI technology. With the development of technology, AI technology is also accelerating as the amount of data increases explosively than before. However, compared to the interest in AI education, research on data education with AI is still insufficient. According to the case analysis of exsisting AI data education, there were cases of educating the process and part of data science, but it was hard to find studies related to data collection. Cause physical computing tools have a positive effect on AI education for elementary school students, data collection cases using tools were studied, but researches related to data collection were rare. Therefore, in this study, an efficient data collection method using physical tools was designed. A structural diagram of a data collection program was created using COBL S, a modular physical computing teaching tool, and examples of program screens from the service side and the user side were configured. This study has limitations in that the establishment of an AI education platform that can be used in conjunction with future program production and programs should be prioritized as a proposal in terms of design.

An Analysis of the International Trends of Research on Artificial Intelligence in Education Using Topic Modeling (인공지능 활용 교육의 토픽모델링 분석을 통한 수학교육 연구 방향의 함의)

  • Noh, Jihwa;Ko, Ho Kyoung;Kim, Byeongsoo;Huh, Nan
    • Journal of the Korean School Mathematics Society
    • /
    • v.26 no.1
    • /
    • pp.1-19
    • /
    • 2023
  • This study analyzed the international trends of research concerning artificial intelligence in education by examining 352 papers recently published in the International Journal of Artificial Intelligence in Education(IJAIED) with the topic modeling method. The IJAIED is the official, SCOPUS-indexed journal of the International AIED Society. The analysis revealed that international AIED research trends could be categorized into eight topics with topics such as analyzing student behavior model in learning systems and designing feedback to student solutions being increased over time, whereas research focusing on data handling methods was decreased over time. Based on the findings implications and suggestions for the research and development of the applications of AIED were provided.

Analysis of functions and applications of intelligent tutoring system for personalized adaptive learning in mathematics (개인 맞춤형 수학 학습을 위한 인공지능 교육시스템의 기능과 적용 사례 분석)

  • Sung, Jihyun
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.303-326
    • /
    • 2023
  • Mathematics is a discipline with a strong systemic structure, and learning deficits in previous stages have a great influence on the next stages of learning. Therefore, it is necessary to frequently check whether students have learned well and to provide immediate feedback, and for this purpose, intelligent tutoring system(ITS) can be used in math education. For this reason, it is necessary to reveal how the intelligent tutoring system is effective in personalized adaptive learning. The purpose of this study is to investigate the functions and applications of intelligent tutoring system for personalized adaptive learning in mathematics. To achieve this goal, literature reviews and surveys with students were applied to derive implications. Based on the literature reviews, the functions of intelligent tutoring system for personalized adaptive learning were derived. They can be broadly divided into diagnosis and evaluation, analysis and prediction, and feedback and content delivery. The learning and lesson plans were designed by them and it was applied to fifth graders in elementary school for about three months. As a result of this study, intelligent tutoring system was mostly supporting personalized adaptive learning in mathematics in several ways. Also, the researcher suggested that more sophisticated materials and technologies should be developed for effective personalized adaptive learning in mathematics by using intelligent tutoring system.