• Title/Summary/Keyword: 인공감쇠

Search Result 102, Processing Time 0.019 seconds

Creep Damage Evaluation of Cr-Mo Steel High-Temperature Pipeline Material for Fossil Power Plant Using Ultrasonic Test Method (초음파법을 이용한 Cr-Mo강 고온배관재료의 크리프손상 평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.18-26
    • /
    • 2000
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operating conditions such as high temperature and high pressure for an extended period time. Conventional measurement techniques(replica method, electric resistance method, and hardness test method) for measuring creep damage have such disadvantages as complex preparation and measurement procedures, too many control parameters. And also these techniques have low practicality and applied only to component surfaces with good accessibility. In this paper, artificial creep degradation test and ultrasonic measurement for their creep degraded specimens(Cr-Mo alloy steels) were carried out for the purpose of evaluation for creep damage. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep degradation tests using life prediction formula were carried out. As a result of ultrasonic tests for crept specimens. we conformed that both the sound velocity decreased and attenuation coefficient linearly increased in proportion to the Increase of creep life fraction($\Phi$c).

  • PDF

Optimization of Intentional Mistuning for Bladed Disk : Damping and Coupling Effect (블레이드 디스크의 International Mistuning 최적화 : 감쇠와 커플링효과)

  • Choi, ByeongKeun;Kim, WonChul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.429-436
    • /
    • 2005
  • In turbomachinery rotor, there are small differences in the structural and/or geometrical properties of individual blades, which are referred to as blade mistuning. Mistuning effect of the forced response of bladed disks can be extremely large as often reported in many studies. In this paper, the pattern optimization of intentional mistuning for bladed disks considering with damping and coupling effect is the focus of the present investigation. More specifically, the class of intentionally mistuned disks considered here is limited, for cost reasons, to arrangements of two types of blades (A and B, say) and Genetic Algorithm and steepest descent method are used to optimize the arrangement of these blades around the disk to reduce the forced response of blade with different damping and coupling stiffness. Examples of application involving both simple bladed disk models and a 17-blade industrial rotor clearly demonstrate the significant benefits of using this class of intentionally mistuned disks.

Constraints for the Design of Room Reverberation Filter by Using 5-DOF Reverberation Model (5자유도 잔향 모델을 이용한 실내 잔향 필터 설계를 위한 조건)

  • 김소희;김양한
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.58-65
    • /
    • 2001
  • Recently, a 5-degrees-of-freedom (DOF) reverberation model was proposed as a method of representing subjective perception of reverberation as objective measures[1]. This model approximates sound energy decay curve by five objective measures, widely used in which have been concert hall acoustics. However, it is note worthy that there can be infinite number of impulse responses which correspond to a selected 5-DOF reverberation model. There may exist some filters making very unnatural and unrealistic sound. In this paper, the limitation of the 5-DOF reverberation model when it is used as a filter design criteria is investigated. When a 5-DOF reverberation model is given, additional constraints to get natural reverberation are suggested. This is based on the listening tests for several quite different source sounds.

  • PDF

A Detection Method of Fake Fingerprint in Optical Fingerprint Sensor (광학식 지문센서에서의 위조 지문 검출 방법)

  • Lee, Ji-Sun;Kim, Jae-Hwan;Chae, Jin-Seok;Lee, Byoung-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.492-503
    • /
    • 2008
  • With the recent development and increasing importance of personal identification systems, biometric technologies with less risk of loss or unauthorized use are being popularized rapidly. In particular, because of their high identification rate and convenience, fingerprint identification systems are being used much more commonly than other biometric systems such as iris recognition, face recognition and vein pattern recognition. However, a fingerprint identification system has the problem that artificially forged finger-prints can be used as input data. Thus, in order to solve this problem, the present study proposed a method for detecting forged fingerprints by measuring the degree of attenuation when the light from an optical fingerprint sensor passes through the finger and analyzing changes in the transmission of light over stages at fixed intervals. In order to prove improvement in the performance of the proposed system, we conducted an experiment that compared the system with an existing multi-sensor recognition system that measures also the temperature of fingerprint. According to the results of the experiment, the proposed system improved the forged fingerprint detection rate by around 32.6% and this suggests the possibility of solving the security problem in fingerprint identification systems.

  • PDF

Multi-objective Integrated Optimization of Diagrid Structure-smart Control Device (다이어그리드 구조물-스마트 제어장치의 다목적 통합 최적화)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.69-77
    • /
    • 2013
  • When structural design of a tall building is conducted, reduction of wind-induced lateral displacement is one of the most important problem. For this purpose, additional dampers and vibration control devices are generally considered. In this process, control performance of additional devices are usually investigated for optimal design without variation of characteristics of a structure. In this study, multi-objective integrated optimization of structure-smart control device is conducted and possibility of reduction of structural resources of a tall building with additional smart damping device has been investigated. To this end, a 60-story diagrid building structure is used as an example structure and artificial wind loads are used for evaluation of wind-induced responses. An MR damper is added to the conventional TMD to develop a smart TMD. Because dynamic responses and the amount of structural material and additional smart damping devices are required to be reduced, a multi-objective genetic algorithm is employed in this study. After numerical simulation, various optimal designs that can satisfy control performance requirement can be obtained by appropriately reducing the amount of structural material and additional smart damping device.

Implementation of Semi-infinite Boundary Condition for Dynamic Finite Element Analysis (동적 유한요소해석에서의 반무한 경계조건의 실행)

  • Choi, Chang-Ho;Chung, Ha-Ik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.37-43
    • /
    • 2006
  • Dynamic numerical analysis of geotechnical problems requires a way to simulate the decrease of energy as the domain of interest gets larger. This phenomenon is usually referred to as radiation damping or geometric attenuation and it is distinguished from material damping in which elastic energy is actually dissipated by viscous, hysteretic, or other mechanism. The fact that the domain of analysis in numerical modeling must be chosen, however, causes a need for special attention at the boundary. This observation leads directly to the idea of determining the dynamic response of the interior region from a finite model consisting of the interior region subjected to a boundary condition which ensures that all energy arriving at the boundary is absorbed. This paper presents a simple methodology to simulate transmitting boundaries condition using viscoelastic infinite elements within the recently developed "OpenSees" finite element code. The methodology used here provides that the level of absorption for traveling waves is efficient enough for practical purposes, but unsatisfactory for the case of sharp incident angles. The effectiveness of the infinite elements for the absorption of incident waves at boundaries is evaluated via example analysis.

Experimental analysis and modeling for predicting bistatic reverberation in the presence of artificial bubbles (인공기포 존재 환경에서의 양상태 잔향음 예측을 위한 해상 실험 분석 및 모델링 연구)

  • Yang, Wonjun;Oh, Raegeun;Bae, Ho Seuk;Son, Su-Uk;Kim, Da Sol;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.426-434
    • /
    • 2022
  • Bubbles generated by various causes in the ocean are known to persist for long periods of time. Although the volume occupied by bubbles in the ocean is small, the presence of bubbles in ocean due to resonance and attenuation greatly affects the acoustic properties. Accordingly, bistatic reverberation experiment was performed in the ocean where artificial bubbles exist. A number of transducers and receivers were installed on 6 buoys arranged in a hexagonal shape, and blowing agents were dropped in the center of the buoy to generate bubbles. For reverberation modeling that reflects acoustic characteristics changed by bubbles, the spatial distribution of bubbles was estimated using video data and received signals. A measurement-based bubble spectral shape was used, and it was assumed that the bubble density within the spatial distribution of the estimated bubble was the same. As a result, it was confirmed that the bubble reverberation was simulated in a time similar to the measured data regardless of the bubble density, and the bubble reverberation level similar to the measured data was simulated at a void fraction of about 10-7 ~ 10-6.8.

Analysis of Respiratory Motion Artifacts in PET Imaging Using Respiratory Gated PET Combined with 4D-CT (4D-CT와 결합한 호흡게이트 PET을 이용한 PET영상의 호흡 인공산물 분석)

  • Cho, Byung-Chul;Park, Sung-Ho;Park, Hee-Chul;Bae, Hoon-Sik;Hwang, Hee-Sung;Shin, Hee-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.3
    • /
    • pp.174-181
    • /
    • 2005
  • Purpose: Reduction of respiratory motion artifacts in PET images was studied using respiratory-gated PET (RGPET) with moving phantom. Especially a method of generating simulated helical CT images from 4D-CT datasets was developed and applied to a respiratory specific RGPET images for more accurate attenuation correction. Materials and Methods: Using a motion phantom with periodicity of 6 seconds and linear motion amplitude of 26 mm, PET/CT (Discovery ST: GEMS) scans with and without respiratory gating were obtained for one syringe and two vials with each volume of 3, 10, and 30 ml respectively. RPM (Real-Time Position Management, Varian) was used for tracking motion during PET/CT scanning. Ten datasets of RGPET and 4D-CT corresponding to every 10% phase intervals were acquired. from the positions, sizes, and uptake values of each subject on the resultant phase specific PET and CT datasets, the correlations between motion artifacts in PET and CT images and the size of motion relative to the size of subject were analyzed. Results: The center positions of three vials in RGPET and 4D-CT agree well with the actual position within the estimated error. However, volumes of subjects in non-gated PET images increase proportional to relative motion size and were overestimated as much as 250% when the motion amplitude was increased two times larger than the size of the subject. On the contrary, the corresponding maximal uptake value was reduced to about 50%. Conclusion: RGPET is demonstrated to remove respiratory motion artifacts in PET imaging, and moreover, more precise image fusion and more accurate attenuation correction is possible by combining with 4D-CT.

Dynamic Behavior Analysis of Mechanical Monoleaflet Heart Valve Prostheses (기계식 一葉심장밸브의 동적거동 해석)

  • 천길정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2090-2097
    • /
    • 1992
  • In this paper, fluttering behavior of mechanical monloleaflet heart valve prosthesis was analyzed taking into consideration of the impact between the valve occluder and the stopper. The motion of valve occluder was modeled as a rotating system, and equations were derived by employing the moment equilibrium conditions. Lift force, drag force, gravity and buoyancy were considered as external forces acting on the valve occluder. The 4th order Runge-Kutta method was used to solve the equations. The results demonstrated that the occluder reaches steady eguilibrium position only after damped vibration. The mean damping ratio is in the range of 0.197-0.301. Fluttering frequency does not have any specific value, but varies as a function of time. It is in the range of 11-84Hz. Valve opening appears to be affected by the orientation of the valve relative to gravitational forces.

Vibration Control of Flexible Rotor Systems Using an Electro-rheological Fluid Damper (ER 유체 감쇠기를 이용한 유연 회전축 계의 진동제어)

  • Lim, Seung-Chul;Chae, Jeong-Jae;Park, Sang-Min;Yun, Eun-Gyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.365-373
    • /
    • 2002
  • This paper concerns the design and application of an electro-rheological (ER) fluid damper to semiactive vibration control of rotor systems. In particular, the system under present study is constructed structurally flexible in order to explore multiple critical speeds within operation range. To this end, the dynamic models of the proposed ER damper and its associated amplifier are derived in the first place. Subsequently entire rotor system model is assembled along with the dynamics of the end effector based on a finite element method enabling prediction as to its free and forced vibration characteristics. Next, an artificial intelligent (AI) feedback controller is synthesized taking into account the peculiarity of Coulomb damping effect in rotor applications. Finally, computational and experimental results are presented including model validation and control performances. In practice, such an AI control proved effective whether the spin speed was either before or after critical speeds.