DOI QR코드

DOI QR Code

Experimental analysis and modeling for predicting bistatic reverberation in the presence of artificial bubbles

인공기포 존재 환경에서의 양상태 잔향음 예측을 위한 해상 실험 분석 및 모델링 연구

  • Received : 2022.05.25
  • Accepted : 2022.06.29
  • Published : 2022.07.31

Abstract

Bubbles generated by various causes in the ocean are known to persist for long periods of time. Although the volume occupied by bubbles in the ocean is small, the presence of bubbles in ocean due to resonance and attenuation greatly affects the acoustic properties. Accordingly, bistatic reverberation experiment was performed in the ocean where artificial bubbles exist. A number of transducers and receivers were installed on 6 buoys arranged in a hexagonal shape, and blowing agents were dropped in the center of the buoy to generate bubbles. For reverberation modeling that reflects acoustic characteristics changed by bubbles, the spatial distribution of bubbles was estimated using video data and received signals. A measurement-based bubble spectral shape was used, and it was assumed that the bubble density within the spatial distribution of the estimated bubble was the same. As a result, it was confirmed that the bubble reverberation was simulated in a time similar to the measured data regardless of the bubble density, and the bubble reverberation level similar to the measured data was simulated at a void fraction of about 10-7 ~ 10-6.8.

해양에서 다양한 원인에 의해 발생된 기포들은 해수 중 오랜 시간 잔존하는 것으로 알려져 있다. 이러한 기포들이 해양환경에서 차지하고 있는 부피는 매우 작지만 공진, 감쇠 등으로 인해 해수 중 기포의 존재는 음향 특성에 큰 영향을 미친다. 이에 따라 본 논문에서는 인공기포가 존재하는 해양 환경에서의 양상태 잔향음 실험을 수행하였다. 다수의 송수신기들이 육각형 형태로 배치된 6개의 부이에 설치되었으며, 부이 중앙에 발포제를 투하하여 인공기포를 발생시켰다. 발생된 기포에 의해 변화하는 음향 특성을 반영한 잔향음 모델링을 위해 영상자료와 수신신호를 이용하여 기포의 공간적인 분포를 추정하였다. 측정치 기반의 기포 분포 형태를 이용하였으며, 추정한 기포의 공간적 분포 내에서의 기포 밀도는 동일하다고 가정하여 기포 밀도의 변화에 따른 모의 결과를 측정치와 비교, 분석하였다. 그 결과 기포에 의한 잔향음 모의결과가 실측값과 유사한 시간대에 모의되었으며, 약 10-7 ~ 10-6.8의 기포율에서 실측값과 유사한 기포 잔향음 준위가 모의됨을 확인하였다.

Keywords

Acknowledgement

본 논문은 국방과학연구소(관리번호: UE200004DD)에서 지원하여 이루어졌습니다.

References

  1. S. A. Thorpe, P. Bowter, and D. K. Woolf, "Some factors affecting the size distributions of oceanic bubbles," J. Phys. Oceanogr. 22, 382-389 (1992). https://doi.org/10.1175/1520-0485(1992)022<0382:SFATSD>2.0.CO;2
  2. H. Medwin and C. S. Clay, Fundamentals of Acoustical Oceanography (Academic Press, San Diego, 1998), Chap. 8.
  3. R. J. Urick, Principles of Underwater Sound (McGraw-Hill, New York, 1983), Chap. 8.
  4. M. V. Hall, "A comprehensive model of wind-generated bubbles in the ocean and predictions of the effects on sound propagation at frequencies up to 40 kHz," J. Acoust. Soc. Am. 86, 1103-1117 (1989). https://doi.org/10.1121/1.398102
  5. S. Vagle and D. M. Farmer, "The measurement of bubble-size distributions by acoustical backscatter," J. Atm and Oceanic Tech. 9, 630-644 (1992). https://doi.org/10.1175/1520-0426(1992)009<0630:TMOBSD>2.0.CO;2
  6. R. V. Vossen and M. A. Ainslie, "The effect of wind-generated bubbles on sea-surface backscattering at 940 Hz," J. Acoust. Soc. Am. 130, 3413-3420 (2011). https://doi.org/10.1121/1.3626125
  7. P. H. Dahl, J. W. Choi, N. J. Williams, and H. C. Graber, "Field measurements and modeling of attenuation from near-surface bubbles for frequencies 1-20 kHz." J. Acoust. Soc. Am. 124, EL163-EL169 (2008). https://doi.org/10.1121/1.2963096
  8. M. A. Ainslie, "Effect of wind-generated bubbles on fixed range acoustic attenuation in shallow water at 1-4 kHz," J. Acoust. Soc. Am. 118, 3513-3523 (2005). https://doi.org/10.1121/1.2114527
  9. E. Lamarre and W. K. Melville, "Sound-speed measurements near the ocean surface," J. Acoust. Soc. Am. 96, 3605-3616 (1994). https://doi.org/10.1121/1.410578
  10. S. Vagle and H. Burch, "Acoustic measurements of the sound-speed profile in the bubbly wake formed by a small motor boat," J. Acoust. Soc. Am. 117, 153-163 (2005). https://doi.org/10.1121/1.1819502
  11. B. P. Michael and H. P. Bucher, "Gaussian beam tracing for computing ocean acoustic fields," J. Acoust. Soc. Am. 82, 1349-1359 (1987). https://doi.org/10.1121/1.395269
  12. APL-UW, "APL-UW high-frequency ocean environmental acoustic models handbook," APL-UW TR 9407, AEAS 9501, Appl. Physics Lab., University of Washington, Tech. Rep., 1997.
  13. D. D. Ellis, "A shallow water normal mode reverberation model," J. Acoust. Soc. Am. 97, 2804-2814 (1995). https://doi.org/10.1121/1.411910
  14. H. Weinberg, "CASS roots," Proc. OCEANS 2000 MTS/IEEE Conference and Exhibition, 1071-1076 (2000).
  15. M. V. Trevorrow, S. Vagle, and D. M. Farmer, "Acoustical measurements of microbubbles within ship wakes," J. Acoust. Soc. Am. 95, 1922-1930 (1994). https://doi.org/10.1121/1.408706