• Title/Summary/Keyword: 이상 상태 탐지

Search Result 138, Processing Time 0.022 seconds

A Study of an Anomalous Event Detection using White-List on Control Networks (제어망에서 화이트 리스트 기법을 이용한 이상 징후 탐지에 관한 연구)

  • Lee, DongHwi;Choi, KyongHo
    • Convergence Security Journal
    • /
    • v.12 no.4
    • /
    • pp.77-84
    • /
    • 2012
  • The control network has been operated in a closed. But it changes to open to external for business convenience and cooperation with several organizations. As the way of connecting with user extends, the risk of control network gets high. Thus, in this paper, proposed the technique of an anomalous event detection using white-list for control network security and minimizing the cyber threats. The proposed method can be collected and cataloged of only normal data from traffic of internal network, control network and field devices. Through way to check the this situation, we can separate normal and abnormal behavior.

Stress Detection of Railway Point Machine Using Sound Analysis (소리 정보를 이용한 철도 선로전환기의 스트레스 탐지)

  • Choi, Yongju;Lee, Jonguk;Park, Daihee;Lee, Jonghyun;Chung, Yongwha;Kim, Hee-Young;Yoon, Sukhan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.433-440
    • /
    • 2016
  • Railway point machines act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Since point failure can significantly affect railway operations with potentially disastrous consequences, early stress detection of point machine is critical for monitoring and managing the condition of rail infrastructure. In this paper, we propose a stress detection method for point machine in railway condition monitoring systems using sound data. The system enables extracting sound feature vector subset from audio data with reduced feature dimensions using feature subset selection, and employs support vector machines (SVMs) for early detection of stress anomalies. Experimental results show that the system enables cost-effective detection of stress using a low-cost microphone, with accuracy exceeding 98%.

A New Method to Detect Anomalous State of Network using Information of Clusters (클러스터 정보를 이용한 네트워크 이상상태 탐지방법)

  • Lee, Ho-Sub;Park, Eung-Ki;Seo, Jung-Taek
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.3
    • /
    • pp.545-552
    • /
    • 2012
  • The rapid development of information technology is making large changes in our lives today. Also the infrastructure and services are combinding with information technology which predicts another huge change in our environment. However, the development of information technology brings various types of side effects and these side effects not only cause financial loss but also can develop into a nationwide crisis. Therefore, the detection and quick reaction towards these side effects is critical and much research is being done. Intrusion detection systems can be an example of such research. However, intrusion detection systems mostly tend to focus on judging whether particular traffic or files are malicious or not. Also it is difficult for intrusion detection systems to detect newly developed malicious codes. Therefore, this paper proposes a method which determines whether the present network model is normal or abnormal by comparing it with past network situations.

Determination of the Optimal Checkpoint and Distributed Fault Detection Interval for Real-Time Tasks on Triple Modular Redundancy Systems (삼중구조 시스템의 실시간 태스크 최적 체크포인터 및 분산 고장 탐지 구간 선정)

  • Seong Woo Kwak;Jung-Min Yang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.527-534
    • /
    • 2023
  • Triple modular redundancy (TMR) systems can continue their mission by virtue of their structural redundancy even if one processor is attacked by faults. In this paper, we propose a new fault tolerance strategy by introducing checkpoints into the TMR system in which data saving and fault detection processes are separated while they corporate together in the conventional checkpoints. Faults in one processor are tolerated by synchronizing the state of three processors upon detecting faults. Simultaneous faults occurring to more than one processor are tolerated by re-executing the task from the latest checkpoint. We propose the checkpoint placement and fault detection strategy to maximize the probability of successful execution of a task within the given deadline. We develop the Markov chain model for the TMR system having the proposed checkpoint strategy, and derive the optimal fault detection and checkpoint interval.

A Sensor Data Management System for USN based Fire Detection Application (USN 기반의 화재감시 응용을 위한 센서 데이터 처리 시스템)

  • Park, Won-Ik;Kim, Young-Kuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.5
    • /
    • pp.135-145
    • /
    • 2011
  • These days, the research of a sensor data management system for USN based real-time monitoring application is active thanks to the development and diffusion of sensor technology. The sensor data is rapidly changeable, continuous and massive row level data. However, end user is only interested in high level data. So, it is essential to effectively process the row level data which is changeable, continuous and massive. In this paper, we propose a sensor data management system with multi-analytical query function using OLAP and anomaly detection function using learning based classifier. In the experimental section, we show that our system is valid through the some experimental scenarios. For the this, we use a sensor data generator implemented by ourselves.

A Distributed Real-time Self-Diagnosis System for Processing Large Amounts of Log Data (대용량 로그 데이터 처리를 위한 분산 실시간 자가 진단 시스템)

  • Son, Siwoon;Kim, Dasol;Moon, Yang-Sae;Choi, Hyung-Jin
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.58-68
    • /
    • 2018
  • Distributed computing helps to efficiently store and process large data on a cluster of multiple machines. The performance of distributed computing is greatly influenced depending on the state of the servers constituting the distributed system. In this paper, we propose a self-diagnosis system that collects log data in a distributed system, detects anomalies and visualizes the results in real time. First, we divide the self-diagnosis process into five stages: collecting, delivering, analyzing, storing, and visualizing stages. Next, we design a real-time self-diagnosis system that meets the goals of real-time, scalability, and high availability. The proposed system is based on Apache Flume, Apache Kafka, and Apache Storm, which are representative real-time distributed techniques. In addition, we use simple but effective moving average and 3-sigma based anomaly detection technique to minimize the delay of log data processing during the self-diagnosis process. Through the results of this paper, we can construct a distributed real-time self-diagnosis solution that can diagnose server status in real time in a complicated distributed system.

Relative Location based Risk Calculation to Prevent Identity Theft in Electronic Payment Systems (전자지불거래에서 상대위치와 연동한 도용 위험성 산출방법)

  • Suh, Hyo-Joong;Hwang, Hoyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.455-461
    • /
    • 2020
  • Electronic payment system using Internet banking is a very important application for users of e-commerce environment. With rapidly growing use of fintech applications, the risk and damage caused by malicious hacking or identity theft are getting significant. To prevent the damage, fraud detection system (FDS) calculates the risk of the electronic payment transactions using user profiles including types of goods, device status, user location, and so on. In this paper, we propose a new risk calculation method using relative location of users such as SSID of wireless LAN AP and MAC address. Those relative location information are more difficult to imitate or copy compared with conventional physical location information like nation, GPS coordinates, or IP address. The new method using relative location and cumulative user characteristics will enable stronger risk calculation function to FDS and thus give enhanced security to electronic payment systems.

Dementia Patient Wandering Behavior and Anomaly Detection Technique through Biometric Authentication and Location-based in a Private Blockchain Environment (프라이빗 블록체인 환경에서 생체인증과 위치기반을 통한 치매환자 배회행동 및 이상징후 탐지 기법)

  • Han, Young-Ae;Kang, Hyeok;Lee, Keun-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.119-125
    • /
    • 2022
  • With the recent increase in dementia patients due to aging, measures to prevent their wandering behavior and disappearance are urgently needed. To solve this problem, various authentication methods and location detection techniques have been introduced, but the security problem of personal authentication and a system that can check indoor and outdoor overall was lacking. In order to solve this problem, various authentication methods and location detection techniques have been introduced, but it was difficult to find a system that can check the security problem of personal authentication and indoor/outdoor overall. In this study, we intend to propose a system that can identify personal authentication, basic health status, and overall location indoors and outdoors by using wristband-type wearable devices in a private blockchain environment. In this system, personal authentication uses ECG, which is difficult to forge and highly personally identifiable, Bluetooth beacon that is easy to use with low power, non-contact and automatic transmission and reception indoors, and DGPS that corrects the pseudorange error of GPS satellites outdoors. It is intended to detect wandering behavior and abnormal signs by locating the patient. Through this, it is intended to contribute to the prompt response and prevention of disappearance in case of wandering behavior and abnormal symptoms of dementia patients living at home or in nursing homes.

XGBoost Based Prediction Model for Virtual Metrology in Semiconductor Manufacturing Process (반도체 공정에서 가상계측 위한 XGBoost 기반 예측모델)

  • Hahn, Jung-Suk;Kim, Hyunggeun
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.477-480
    • /
    • 2022
  • 반도체 성능 향상으로 신호를 전달하는 회로의 단위가 마이크로 미터에서 나노미터로 미세화되어 선폭(linewidth)이 점점 좁아지고 있다. 이러한 변화는 검출해야 할 불량의 크기가 작아지고, 정상 공정상태와 비정상 공정상태의 차이도 상대적으로 감소되어, 공정오차 및 공정조건의 허용범위가 축소되었음을 의미한다. 따라서 검출해야 할 이상징후 탐지가 더욱 어렵게 되어, 높은 정밀도와 해상도를 갖는 검사공정이 요구되고 있다. 이러한 이유로, 미세 공정변화를 파악할 수 있는 신규 검사 및 계측 공정이 추가되어 TAT(Turn-around Time)가 증가하게 되었고, 웨이퍼가 가공되어 완제품까지 도달하는데 필요한 공정시간이 증가하여 제조원가 상승의 원인으로 작용한다. 본 논문에서는 웨이퍼의 검계측 데이터가 아닌, 제조공정 과정에서 발생하는 다양한 센서 및 장비 데이터를 기반으로 웨이퍼 제조 결과가 양품인지 그렇지 않으면 불량인지 구별할 수 있는 가상계측 모델을 제안한다. 기계학습의 여러 알고리즘 중에서 다양한 장점을 갖는 XGBoost 알고리즘을 이용하여 예측모델을 구축하였고, 데이터 전처리(data-preprocessing), 주요변수 추출(feature selection), 모델 구축(model design), 모델 평가(model evaluation)의 순서로 연구를 수행하였다. 결과적으로 약 94% 이상의 정확성을 갖는 모형을 구축하는데 성공하였으나 더욱 높은 정확성을 확보하기 위해서는 반도체 공정과 관련된 Domain Knowledge 를 반영한 모델구축과 같은 추가적인 연구가 필요하다.

Improvement of learning concrete crack detection model by weighted loss function

  • Sohn, Jung-Mo;Kim, Do-Soo;Hwang, Hye-Bin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.15-22
    • /
    • 2020
  • In this study, we propose an improvement method that can create U-Net model which detect fine concrete cracks by applying a weighted loss function. Because cracks in concrete are a factor that threatens safety, it is important to periodically check the condition and take prompt initial measures. However, currently, the visual inspection is mainly used in which the inspector directly inspects and evaluates with naked eyes. This has limitations not only in terms of accuracy, but also in terms of cost, time and safety. Accordingly, technologies using deep learning is being researched so that minute cracks generated in concrete structures can be detected quickly and accurately. As a result of attempting crack detection using U-Net in this study, it was confirmed that it could not detect minute cracks. Accordingly, as a result of verifying the performance of the model trained by applying the suggested weighted loss function, a highly reliable value (Accuracy) of 99% or higher and a harmonic average (F1_Score) of 89% to 92% was derived. The performance of the learning improvement plan was verified through the results of accurately and clearly detecting cracks.