• Title/Summary/Keyword: 이산화 오차

Search Result 55, Processing Time 0.02 seconds

Analysis of statistical models on temperature at the Suwon city in Korea (수원시 기온의 통계적 모형 연구)

  • Lee, Hoonja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1409-1416
    • /
    • 2015
  • The change of temperature influences on the various aspect, especially human health, plant and animal's growth, economics, industry, and culture of the country. In this article, the autoregressive error (ARE) model has been considered for analyzing the monthly temperature data at the Suwon monitoring site in Korea. In the ARE model, five meteorological variables, four greenhouse gas variables and five pollution variables are used as the explanatory variables for the temperature data set. The five meteorological variables are wind speed, rainfall, radiation, amount of cloud, and relative humidity. The four greenhouse gas variables are carbon dioxide ($CO_2$), methane ($CH_4$), nitrous oxide ($N_2O$), and chlorofluorocarbon ($CFC_{11}$). And the five air pollution explanatory variables are particulate matter ($PM_{10}$), sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), ozone ($O_3$), and carbon monoxide (CO). Among five meteorological variables, radiation, amount of cloud, and wind speed are more influence on the temperature. The radiation influences during spring, summer and fall, whereas wind speed influences for the winter time. Also, among four greenhouse gas variables and five pollution variables, chlorofluorocarbon, methane, and ozone are more influence on the temperature. The monthly ARE model explained about 43-69% for describing the temperature.

Kinematic Modeling of a Track Trolley Using Extended Kalman Filter (확장 칼만필터를 이용한 궤도틀림 트롤리의 운동학적 모형화)

  • Lee, Jun S.;Choi, Il Yoon;Kim, Sun Hee;Um, Ju Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.5
    • /
    • pp.447-456
    • /
    • 2015
  • Continuous as well as discrete measurement of the track geometry based on a track trolley are investigated to enhance the efficiency of the trolley and to minimize the measurement errors. A new kinematic model based on the track coordinates involving transition and circular curves is developed to improve the accuracy of the measurement; a nonlinear Extended Kalman Filter (EKF) is employed to linearize the governing equations. The proposed model is verified with the ideal track geometry in terms of both discrete and continuous measurement. Comparison with the previous models is also made to prove the applicability of the kinematic model.

On Estimating Position and Velocity of Mobile Stations by Path-loss Data Base in a Cellular System (셀룰라 이동 통신 시스템에서 경로손실 데이터 베이스를 이용한 이동국의 위치와 속도 추정 방식)

  • Lee, Sang-Hun;Chung, Woo-Gon;Choi, Hyung-Jin
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.19-27
    • /
    • 1998
  • To achieve the required services in the next-generation cellular telephone systems, the size of the cell become smaller and/or is of mixed macrocells and microcells. For more efficient system control, We make use of the mobile position and velocity information, provided that the mobility information is relatively accurate. In this paper, we propose an improved version of path-loss measurement algorithm introduced in literature[11]. The microcellular structure with severe multipath fading, reflection and refraction make mobile position and velocity estimation very difficult. In the proposed method, the pre-recorded path-loss informations, called the discrete position data base, are searched to estimate the position. Velocity estimation is obtained as a difference of the position values with respect to the time difference. Moving average filter is applied to smooth the estimated velocity and to reduce the error in the estimates. We also propose a method to simplify system implementation by reducing search area for discrete area database.

  • PDF

Dynamic Algorithm for Solid Problems using MLS Difference Method (MLS 차분법을 이용한 고체역학 문제의 동적해석)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.139-148
    • /
    • 2012
  • The MLS(Moving Least Squares) Difference Method is a numerical scheme that combines the MLS method of Meshfree method and Taylor expansion involving not numerical quadrature or mesh structure but only nodes. This paper presents an dynamic algorithm of MLS difference method for solving transient solid mechanics problems. The developed algorithm performs time integration by using Newmark method and directly discretizes strong forms. It is very convenient to increase the order of Taylor polynomial because derivative approximations are obtained by the Taylor series expanded by MLS method without real differentiation. The accuracy and efficiency of the dynamic algorithm are verified through numerical experiments. Numerical results converge very well to the closed-form solutions and show less oscillation and periodic error than FEM(Finite Element Method).

Robust Intelligent Digital Redesign of Nonlinear System with Parametric Uncertainties (불확실성을 갖는 비선형 시스템의 강인한 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • This paper presents intelligent digital redesign method for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a TS fuzzy model for the chaotic Lorentz system is used as an . example to guarantee the stability and effectiveness of the proposed method.

Low-Power Discrete-Event SoC for 3DTV Active Shutter Glasses (3DTV 엑티브 셔터 안경을 위한 저전력 이산-사건 SoC)

  • Park, Dae-Jin;Kwak, Sung-Ho;Kim, Chang-Min;Kim, Tag-Gon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.18-26
    • /
    • 2011
  • Debates concerning the competitive edge of leading 3DTV technology of the shutter glasses (SG) 3D and the film-type patterned retarder (FPR) are flaring up. Although SG technology enables Full-HD 3D vision, it requires complex systems including the sync transmitter (emitter), the sync processor chip, and the LCD lens in the active shutter glasses. In addition, the transferred sync-signal is easily affected by the external noise and a 3DTV viewer may feel flicker-effect caused by cross-talk of the left and right image. The operating current of the sync processor in the 3DTV active shutter glasses is gradually increasing to compensate the sync reconstruction error. The proposed chip is a low-power hardware sync processor based discrete-event SoC(system on a chip) designed specifically for the 3DTV active shutter glasses. This processor implements the newly designed power-saving techniques targeted for low-power operation in a noisy environment between 3DTV and the active shutter glasses. This design includes a hardware pre-processor based on a universal edge tracer and provides a perfect sync reconstruction based on a floating-point timer to advance the prior commercial 3DTV shutter glasses in terms of their power consumption. These two techniques enable an accurate sync reconstruction in the slow clock frequency of the synchronization timer and reduce the power consumption to less than about a maximum of 20% compared with other major commercial processors. This article describes the system's architecture and the details of the proposed techniques, also identifying the key concepts and functions.

P-Version Model of Stress Concentration Around a Circular Hole in Finite Strips (원공(圓孔)을 갖는 유한판(有限板)의 응력집중(應力集中)에 대한 P-Version 모델)

  • Woo, Kwang Sung;Lee, Chae Gyu;Yun, Young Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.1-8
    • /
    • 1992
  • This paper presents a p-version finite element approach for modeling the stress distribution around a circular hole in a finite strip subjected to membrane and flexural behaviors. Also, same problem with a crack emanating from a perforated tension strip was solved by virtual crack extension method. The p-version of the finite element method based on integrals of Legendre polynomials is shown to perform very well for modeling geometries with very steep stress gradients in the vicinity of a circular cutout. Here, the transfinite mapping technique for circular boundaries was used to avoid the discretization errors. The numerical results from the proposed scheme have a good comparison with those by Nisida, Howland, Newman etc. and the conventional finite element approach.

  • PDF

The Three-Dimensional Acoustic Field Analysis using the Type C CIP Method (C형 CIP법을 이용한 3차원 음장해석)

  • Lee, Chai-Bong;Oh, Sung-Qwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.2
    • /
    • pp.125-132
    • /
    • 2010
  • The authors have investigated the acoustic field analysis using the Constrained Interpolation Profile(CIP) Method recently proposed by Yabe. This study has examined the calculation accuracy of the three-dimensional(3-D) acoustic field analysis using the type C CIP method. In this paper we show phase error of type C CIP method and the dependence on the wave-propagation direction in the type C CIP acoustic field analysis, and then demonstrate that it gives less-diffusive results than conventional analysis. Moreover, in comparison between type C-1 CIP, type C-2 CIP, type M CIP and FDTD, reports the memory requirements and calculation time of each method.

Development of a Real-time Simulation Technique for Cyber-physical System (사이버 물리 시스템을 위한 실시간 시뮬레이션 기술 개발)

  • Kim, Jiyeon;Kim, Hyung-Jong;Kang, Sungjoo
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.181-188
    • /
    • 2014
  • Heterogeneous physical systems and computational devices are incorporated on a large-scale in a CPS (cyber-physical system) environment. Simulations can be useful for the reliable behaviors of CPSs. Time synchronization is one of major technical issues for the simulations. In the CPS, distributed systems control themselves by interacting with each other during runtime. When some simulation models have high complexity, wrong control commands as well as incorrect data can be exchanged due to the time error. We propose a time synchronization algorithm for the hybrid model that has characteristics of both continuous time systems and discrete event systems. In addition, we develop a CPS simulator based on our algorithm. For the verification of the algorithm and the execution of the simulator, we develop an example hybrid model and simulate considering user controls as well as interactions among the distributed systems.

Automatic Liver Segmentation of a Contrast Enhanced CT Image Using a Partial Histogram Threshold Algorithm (부분 히스토그램 문턱치 알고리즘을 사용한 조영증강 CT영상의 자동 간 분할)

  • Kyung-Sik Seo;Seung-Jin Park;Jong An Park
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • Pixel values of contrast enhanced computed tomography (CE-CT) images are randomly changed. Also, the middle liver part has a problem to segregate the liver structure because of similar gray-level values of a pancreas in the abdomen. In this paper, an automatic liver segmentation method using a partial histogram threshold (PHT) algorithm is proposed for overcoming randomness of CE-CT images and removing the pancreas. After histogram transformation, adaptive multi-modal threshold is used to find the range of gray-level values of the liver structure. Also, the PHT algorithm is performed for removing the pancreas. Then, morphological filtering is processed for removing of unnecessary objects and smoothing of the boundary. Four CE-CT slices of eight patients were selected to evaluate the proposed method. As the average of normalized average area of the automatic segmented method II (ASM II) using the PHT and manual segmented method (MSM) are 0.1671 and 0.1711, these two method shows very small differences. Also, the average area error rate between the ASM II and MSM is 6.8339 %. From the results of experiments, the proposed method has similar performance as the MSM by medical Doctor.