C형 CIP법을 이용한 3차원 음장해석

이채봉* · 오성관**

The Three-Dimensional Acoustic Field Analysis using the Type C CIP Method

Chai-bong Lee* · Sung-qwan Oh**

요 약

본 연구는 C형 CIP법을 이용한 3차원 시간영역 음장해석법의 정밀도에 대해서 세밀한 검토를 하였다. 3차원 C형 CIP 음장해석의 위상오차 특성과 전파방향에 따른 오차를 명확히 하고, 본 수치 해석법의 유효성을 나타내었다. 또, 종래의 수치해석법으로 staggered-grid 모델을 이용한 FDTD법에 따른 계산결과와 M형 CIP법에 의한 계산결과와 비교를 하였다. 본 논문의 검토에 의해 같은 이산화조건에서는 C형 CIP법은 M형 CIP법 및 FDTD법보다 해석법이 가진 분산성이 적고, C형 CIP법으로 계산된 음압 파형은 변형이 적은 결과가되는 것을 알 수 있었다. 그리고, C-1형 CIP법, C-2형 CIP법, M형 CIP법 및 FDTD법의 메모리와 계산시간을 비교하였다. 그 결과 C형 CIP해석은 FDTD해석에 비하여 수치분산성이 적지만 많은 사용 메모리와 계산시간이 필요하였다. C-1형과 C-2형 CIP법은 입방체의 격자 대각 방향에서는 축 방향에 비하여 정밀도가 약간 저하하는 것을 알 수 있었다. 그리고 C-2형 CIP법은 C-1형 CIP법보다 사용 메모리와 계산시간이 적고,계산정밀도도 고려해서 보면 유효한 해석법이라는 것이 명확하였다.

ABSTRACT

The authors have investigated the acoustic field analysis using the Constrained Interpolation Profile(CIP) Method recently proposed by Yabe. This study has examined the calculation accuracy of the three-dimensional(3-D) acoustic field analysis using the type C CIP method. In this paper we show phase error of type C CIP method and the dependence on the wave-propagation direction in the type C CIP acoustic field analysis, and then demonstrate that it gives less-diffusive results than conventional analysis. Moreover, in comparison between type C-1 CIP, type C-2 CIP, type M CIP and FDTD, reports the memory requirements and calculation time of each method.

키워드

Type C CIP method, Type M CIP method, Acoustic field analysis, Multi-dimensional, FDTD method

1. 서 론

최근에는 계산기의 발달과 함께 음장의 시간영역 해석법이 개발되고 있으며 몇 가지의 해석법이 제안 되었다. 현재, 비교적 간단히 정식화 되는 staggered-grid를 이용한 유한 차분법(Finite Difference Time Domain Method : FDTD법)이 넓게 적용되고 있다[1-4]. 그러나, FDTD법은 지배 방정식을 중심 차분으로 근사하여 음장을 해석하는 법이기 때문에 해석대상으로 하는 파장과 셀 사이즈의 관계에 따라서

* 동서대학교 전자공학과(lcb@dongseo.ac.krl) 접수일자 : 2010. 03. 11 ** 교신저자:아끼다현립대학 전자공학과 심사완료일자 : 2010. 04. 08

수치적인 오차가 발생하는 것으로 알려져 있다. 고차 의 차분을 이용한 FDTD법도 제안되어 있지만, 이 해 석법은 여러 점으로 구성되고 있기 때문에 경계에서 의 처리가 어렵다. 또, 계산의 정밀도가 시간스텝에 많이 의존하는 것으로 보고되고 있다[4-5]. 이러한 종 래의 해석법에서 발생하는 오차를 감소시키는 새로운 해석법으로 유체역학 분야의 Yabe 박사팀에 의해 제 안된 CIP법(Constrained Interpolation Profile Method) 이 제안되고 있다[6-7]. 이 해석법의 주목할 만한 특 징은 음파의 전파를 해석할 때에 데이터 값과 데이터 의 미분치도 이용해서 계산을 행하는 것이다. 그리고 Directional splitting method를 이용한 다차원 CIP법 으로는 M형 CIP법과 C형 CIP법이 제안되어 있다 [8-9]. 지금까지의 연구는 계산 알고리즘이 비교적 간 단한 M형 CIP법을 이용한 음장해석에 관한 계산 정 밀도의 검토를 하였다. 그러나, C형 CIP법을 이용한 음장해석에 관한 계산정밀도의 검토에 관한 연구는 거의 없는 형편이다.

본 논문에서는 C형 CIP법을 이용한 3차원 시간영역 음장해석법의 정밀도에 대하여 자세한 검토를 하고 본 해석법의 유효성을 나타내었다.

II. C형 CIP법을 이용한 3차원 음장의 수치 해석

2.1 방향분리를 이용한 3차원 음장해석의 정식화 손실을 무시한 경우, 음장의 방정식은 다음과 같다.

$$\rho \frac{\partial v}{\partial t} = - \nabla p, \ \nabla \cdot v = -\frac{1}{K} \frac{\partial p}{\partial t} \tag{1}$$

여기서 ho는 밀도, K는 체적탄성률, p는 음압, v는 입자속도이다. 식(1)에서 아래와 같이 방향분리를 한다.

$$\frac{\partial W}{\partial t} + A \frac{\partial W}{\partial x} = 0, (W^n \to W^*), \tag{2}$$

$$\frac{-\partial W}{\partial t} + B \frac{\partial W}{\partial v} = 0, (W^* \to W^{**}), \tag{3}$$

$$\frac{\partial W}{\partial t} + C \frac{\partial W}{\partial z} = 0, (W^{**} \rightarrow W^{n+1}). \tag{4}$$

여기서, $W \mapsto (p, Zv_x, Zv_y, Zv_z)^T$ 이며 W^* 및 W^{**} 는 각각 x방향에 전파한 후의 W 및 y 방향에 전파한 후의 W를 의미한다. 식(2)에 의해 x방향에 대해서는

$$\frac{\partial}{\partial t} p + c \frac{\partial}{\partial x} Z v_x = 0, \tag{5}$$

$$\frac{\partial}{\partial t} Z v_x + c \frac{\partial}{\partial x} p = 0. \tag{6}$$

가 얻어 진다. 단, Z는 특성임피던스, c는 매질중의 음속이다 $(Z=\sqrt{\rho K},\ c=\sqrt{K/\rho})$. 위 식의 합과 차 를 계산해서 양변에 x로 편미분하면 다음과 같다.

$$\frac{\partial}{\partial t} (\partial_{x} p \pm Z \partial_{x} v_{x}) \pm c \frac{\partial}{\partial x} (\partial_{x} p \pm Z \partial_{x} v_{x}) = 0$$
 (7)

여기서, 매질은 일정하고 $\partial_x = \frac{\partial}{\partial x}$ 이다.

같은 방법으로 y 및 z방향에 대해서도 식을 도출하고 각각의 방향에 대해서 정리하면 다음과 같다. x방향에 대해서,

$$\frac{\partial}{\partial t} F_{x\pm} \pm c \frac{\partial}{\partial x} F_{x\pm} = 0, \tag{8}$$

$$\frac{\partial}{\partial t} G_{x\pm} \pm c \frac{\partial}{\partial x} G_{x\pm} = 0. \tag{9}$$

여기서

$$G_{r+} = \partial_r p \pm Z \partial_r v_r, \tag{10}$$

$$F_{x\pm} = p \pm Z v_x, \tag{11}$$

이 된다. 위의 식은 각각 F_{xz} 와 G_{xz} , F_{yz} 와 G_{yz} 및 F_{zz} 와 G_{zz} 의 방정식으로 되어 있기 때문에 F_{xz} , G_{xz} , F_{yz} , G_{yz} , F_{zz} 및 G_{zz} 를 변수로 해서 CIP법을 적용한 것으로, x, y 및 z방향의 전파에 대해서 음장을 계산하는 것이 가능하다[8-9].

x방향을 계산할 때에는 $p\pm Z\,v_x$ 와 $\partial_x p\pm Z\,\partial_x\,v_x$ 의 계산은 했지만, y방향 계산에 이용하는 $\partial_y p$ 와 z방향 계산에 이용하는 $\partial_z p$ 에 대해서는 x방향의 전 파를 계산하지 않고 있다. 그래서 이하에 나타내는 식 (12)과 식(13)에 1차 함수 보간을 적용하여 $\partial_y p$ 및 $\partial_z p$ 의 x방향의 전파를 계산한다.

$$\frac{\partial}{\partial t} (\partial_{y} p \pm Z \partial_{y} v_{x})$$

$$\pm c \frac{\partial}{\partial x} (\partial_{y} p \pm Z \partial_{y} v_{x}) = 0.$$

$$\frac{\partial}{\partial t} (\partial_{z} p \pm Z \partial_{z} v_{x})$$
(12)

$$\pm c \frac{\partial}{\partial x} (\partial_z p \pm Z \partial_z v_x) = 0. \tag{13}$$

또, y 및 z방향에 대해서도 같은 방법으로 각각의식에 1차 함수 보간을 적용하여 $\partial_x p$ 및 $\partial_z p$ 의 y방향의 전파, $\partial_x p$ 및 $\partial_y p$ 의 z방향의 전파를 계산한다. 이와 같이 변화가 급격하지 않은 변수(3차원 음장해석의 경우는 x방향의 $\partial_y p$ 및 $\partial_z p$, y방향의 $\partial_x p$ 및 $\partial_z p$, z방향의 $\partial_x p$ 및 $\partial_z p$, v방향의 $\partial_x p$ 및 $\partial_z p$, v 항하여 계산 절차를 간단화한 해석법을 M형 CIP법이라고 한다[6].

2.2 CIP법에 의한 3차워 음장해석을 위한 이산화

그림 1은 3차원 음장해석을 CIP법을 이용해서 계산할 경우의 격자 모델을 나타내고 있다. 그림 1에서나타낸 것처럼 본 해석법에는 음압, 입자속도를 그림과 같이 그리드 상에 배치하였다.

본 해석법은 널리 사용되고 있는 staggered-grid 모델(Yee 셀)을 이용한 FDTD법과는 달리, 음압과 입자속도의 반 셀의 어긋남은 존재하지 않는다. 또, 각격자상에 각각의 성분의 미분치 $\partial_x p$, $\partial_x v_x$, $\partial_y p$ 및 $\partial_y v_y$, $\partial_z p$ 및 $\partial_z v_z$ 를 배치하였다.

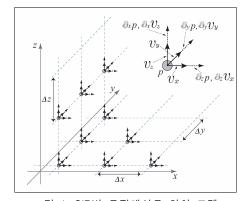


그림 1. CIP법 음장해석을 위한 모델 Fig. 1 Model in acoustic analysis using the CIP method.

방향 변화로는 우선 $\pm x$ 방향으로의 전파를 생각하면 $\pm x$ 방향의 변수로 하는 $F_{x\pm}$ 와 $G_{x\pm}$ 에 대해서는 $\pm x$ 방향에 F_{x+} 와 G_{x+} 가 전파하고 $\pm x$ 방향에 F_{x-} 와 전파한다. 그림 2는 CIP법에 의한 계산의 모델을 나타내고 있다. 그림 2에 의해 $\pm x$ 방향에 대해서 시간스템 $\pm x$ 비항 $\pm x$ 비항 식으로 얻어진다.

$$F_{x\pm}^{n+1}(i,j,k) = a \, \xi^{3} \pm b \, \xi^{2}$$

$$\pm G_{x\pm}^{n}(i,j,k) \xi \pm F_{x\pm}^{n}(i,j,k), \qquad (14)$$

$$G_{x\pm}^{n+1}(i,j,k) = 3 a \xi^2 \pm 2b \xi \pm G_{x\pm}^{n}(i,j,k).$$
 (15)

으로 된다. 단,

$$a = \frac{G_{x\pm}^{n}(i,j,k) \pm G_{x\pm}^{n}(i\mp 1,j,k)}{(\mp \Delta x)^{2}}$$

$$\pm \frac{2(F_{x\pm}^{n}(i,j,k) \mp F_{x\pm}^{n}(i\mp 1,j,k))}{(\mp \Delta_{x})^{3}}, \qquad (16)$$

$$b = \frac{3(F_{x\pm}^{n}(i\mp 1, j, k)\mp F_{x\pm}^{n}(i, j, k))}{(\mp \Delta_{x})^{2}}$$

$$\pm \frac{2 G_{x\pm}^{n}(i,j,k) \pm G_{x\pm}^{n}(i\mp 1,j,k)}{\mp \Delta x}, \qquad (17)$$

$$\xi = \mp c \Delta t. \tag{18}$$

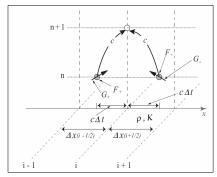


그림 2. CIP법에서 \pm x방향의 $F_{x\pm}$ 와 $G_{x\pm}$ 의 계산법 Fig. 2 Calculation method of $F_{x\pm}$ and $G_{x\pm}$ to \pm x-direction using the CIP method.

여기서, Δx 와 Δt 는 각각 격자 사이즈와의 시간스템 이다. $\pm y$ 방향에 대해서는 $F_{y\pm}$ 와 $G_{y\pm}$, $\pm z$ 방향에 대해서는 $F_{z\pm}$ 와 $G_{z\pm}$ 로 치환한 것으로 $\pm x$ 방향과 같이 구하는 것이 가능하다.

III. CIP법을 이용한 3차원 음장의 계산결과

그림 3은 해석모델을 나타내었다. 해석영역의 중심을 O, 관측점을 Q로 하고 x축과 OQ의 각을 Φ , z축과 OQ의 각을 Φ 로 하였다. 입력으로는 점 O(x, y, z) = (0, 0, 0)에서 식(14) 및 그림 4에서 나타낸 파형으로 음압 구동할 때의 각 관측점에서의 음압을 계산하였다.

$$p(t) = \beta(12 \ \alpha^{2}(t-\tau) - 8 \ \alpha^{3} (t-\tau)^{3}) e^{-\alpha (t-\tau)^{2}}$$
(19)

여기서, $\tau = 50\Delta t$, $\alpha = 1.5 \times \frac{1}{(10\Delta t)^2}$ 와 $\beta = 5.4 \times 10^{-10}$ 으로 하였다. 그리고 이하에서 계산되는 CIP 해석에 대한 각 조건을 표 1에 나타내었다. 그림 5의 (a)는 CIP법으로 계산된 시간에 대한 음압 파형을 나타내었다. 관측점의 좌표(x[m], y[m], z[m])는 Q1(2.5, 0, 0), Q2(5.0, 0, 0) 및 Q3(7.5, 0, 0)로 하고 있다(따라서 $\phi = 0^\circ$, $\theta = 90^\circ$ 로 됨). 단, x, y 및 z는 원점에서의 거리[m]를 나타내고 있다. 그리고

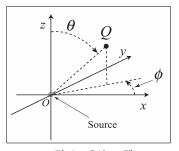
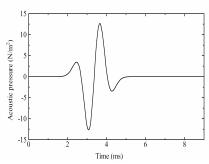
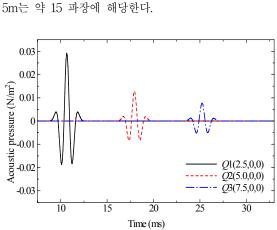


그림 3. 해석 모델 Fig. 3 Analysis model.

그림 (b)는 FDTD법에 의한 해석에 대해서 구한 결과를 나타내었다. 여기서, FDTD법에 의한 해석의 셀사이즈(\(\Delta\)) 및 시간스텝(\(\Delta t\))은 CIP법의 그리드 사이즈와시간스텝과 같은 값을 이용하고 있다. 그림 5에서 (a), (b)의 음압 파형을 비교하면 FDTD해석에 의해서 얻어진 파형이 일그러지고 진동하고 있는 상태임을 알 수있다. 그리고 전파거리가 멀게 되면 진동이 많아지고파형이 크게 일그러지는 것을 알 수 있다.

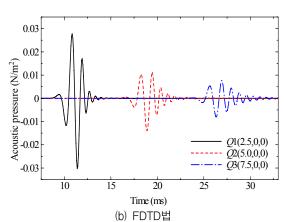
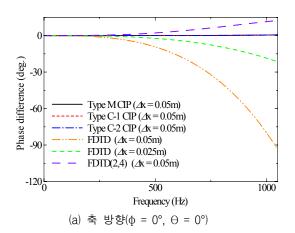

그림 4. 입력된 음압 파형 Fig. 4 Acoustic pressure waveform.

표 1. CIP법의 수치해석 조건 Table 1. Conditions of the analysis by the CIP method

기호	범위 및 조건
gride size time step Φ(azimuthal angle)	$\Delta x = \Delta y = \Delta z = \Delta = 0.05m$ $\Delta t = 6.735 \times 10^{-5} s$ $0^{0} \le \Phi \le 90^{0}$
Θ(elevation	$0^0 \le \rho \le 90^0$
angle) ρ K	$1.21 \\ 1.4235529 \times 10^5$

그림 6은 그림 5 (a)의 Q2(5.0, 0, 0)의 음압 파형 을 주파수 변환하여 구한 CIP 및 FDTD 해석결과와 이론값과의 위상오차를 나타내었다. 그림 6의 종축은 위상오차, 횡축은 주파수를 의미한다. 그림에서 CIP 해석결과는 위상오차가 거의 생기지 않는 반면, FDTD 해석결과는 주파수가 높아짐에 따라 위상오차 가 생기는 것을 알 수 있다. 예를 들면, 1024Hz에서는 170deg. 만큼 위상지연이 생기고 있다. 여기서 셀 사 이즈를 고려하면 1024Hz에서는 point per wavelength(p.p.w.)는 6.7이고 또, 관측점까지의 거리 OQ =



(a) CIP법

그림 5. Q1. Q2 및 Q3의 음압 계산결과 Fig. 5 Calculated results of p at Q1, Q2 and Q3

그림 7은 CIP 및 FDTD 해석결과의 진폭비를 나타 내었다. 종축은 Q2(5.0, 0, 0)의 진폭값과 Q3(7.5, 0, 0)의 진폭값의 비율을 나타내고 있다. 그리고 그림 7 에서는 이론값에서 얻은 진폭비를 나타내고 있으며, 그 값은 -3.52dB 이다. 그림에서 FDTD 해석결과는 전 주파수에 대해서는 이론치와 거의 같지만, CIP 해석결과는 주파수가 높아짐에 따라 약간 감소하고 1024Hz(p.p.w. = 6.7)에서는 이론치보다 1.75dB 감쇄하고 있다. 이것들의 결과에서 x방향에 서의 전파에 대해서, M형 CIP해석은 위상의 정밀도 는 매우 좋지만 약간의 에너지 감소가 생긴다는 것 을 알 수 있다.

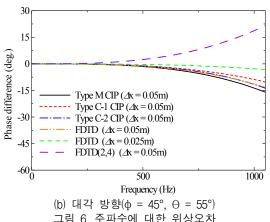
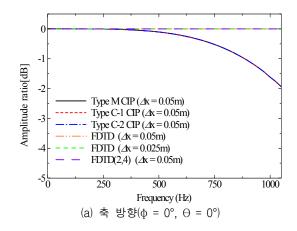


그림 6. 주파수에 대한 위상오차 Fig. 6 Phase error versus frequency.

같은 그림(a)에서 축 방향에서는 CIP의 위상오차가 거의 생기지 않는 반면, FDTD는 주파수가 높아지면 질수록 위상오차가 생기는 것을 알 수 있다. 그리고 그림(b)에서 대각 방향에서는 셀 사이즈를 Δ =0.025m로 한 경우의 FDTD법이 가장 위상오차가 적은 것을 알 수 있었다.

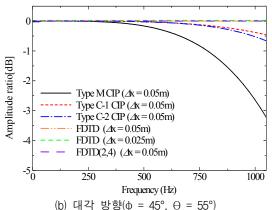

다음으로 전파에 따른 진폭의 감쇠를 평가 하였다. 그림 7에 Q2(5.0,0,0)와 Q3(7.5,0,0)의 음압 파형에서 얻은 진폭비를 나타내었다. 단, (a) 및 (b)는 각각 축 방향과 대각 방향에서의 결과를 나타내고 있다. 여기서 진폭비는 두 점의 진폭비를 계산하고 그 값에서 이론값에서 계산한 진폭비의 값을 줄인 값으로 하고 있다(수치적인 감쇠가 없으면 0dB가 된다).

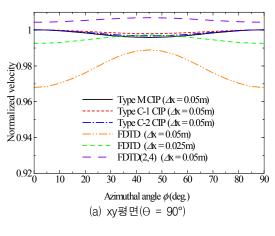
같은 그림에서 축 방향과 대각 방향에서의 FDTD의 진폭비는 전부의 주파수에 대해서 이론값과 거의일치한다. 한편 축 방향과 대각 방향에서의 CIP의 진폭비는 주파수가 높아지는 것에 반하여 약간 감소하고 1024Hz(point per wavelength(p.p.w.): 6.7)에서는이론값보다 약 1.75dB 감쇠하고 있다. 그리고 대각방향에서는 C-1형 CIP법이 M형 CIP법보다 진폭의감쇠가 작은 것을 알았다. 이것들의 결과에서 이하의것을 알 수 있다. 예로 1024Hz일 때, M형 CIP법의 진폭비가 C-1형 CIP법의 진폭비보다도 약 2.5dB 감쇠하고 있다.

다음에 전파방향에 대한 영향을 검토하였다. 그림 8에서는 전파방향에 대한 위상속도를 나타내었으며 (a) 및 (b)는 각각 xy평면($\Theta=90^\circ$)과 3차원 격자의 대각선을 포함한 평면($\Phi=45^\circ$)에서의 결과를 나타내고 있다. 같은 그림에서 종축은 매질의 음속으로 규격화한 위상치로 나타내고 있다. 횡축에 대해서는 (a)가 x축에서의 각도 Φ , (b)가 Φ 하고 있다. 그리고 주파수는 Φ 1024Hz(p.p.w. = 6.7)의 경우를 나타내고 있다.

전체적으로 보면 같은 이산화조건일 경우, C-1형 CIP법이 가장 수치분산성이 적은 해석법이다. CIP법의 해석결과는 축 방향에서 대각 방향으로 향해서 위상속도가 늦어지고 대각 방향에서 가장 늦어진다. FDTD(2,4)법은 전 각도에서 위상속도가 음속보다도약간 빨라진다.

그림 9는 전파방향에 대한 진폭비를 나타내었으며 (a) 및 (b)는 각각 xy평면($\theta = 90^{\circ}$)과 3차원 격자의 대각선을 포함한 평면($\phi = 45^{\circ}$)에서의 결과를 나타내고 있다. 같은 그림에서 종축의 진폭비는 OQ = 5m와




그림 7. 주파수에 대한 진폭비 Fig. 7 Amplitude ratio versus frequency.

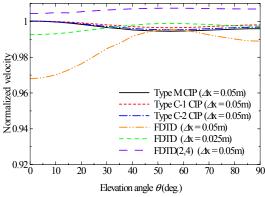
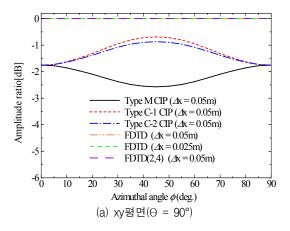
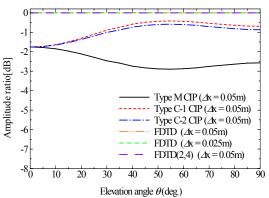

OQ = 7.5m인 두 점의 진폭비를 계산하고 그 값에서 이론값에서 계산한 진폭비의 값을 줄인 값으로 나타내고 있다. 횡축에 대해서는 (a)가 x 축에서의 각도 ϕ , (b)가 z 축에서의 각도 θ 로 하고 있다. 그리고 주파수는 1024Hz(p.p.w. = 6.7)의 경우를 나타내고 있다.

그림 9에서는 FDTD의 진폭비는 축 방향과 대각방향에서의 전 방향에 대해서 이론값와 거의 일치한다. CIP법에 의한 해석결과에는 수치적인 진폭의 감쇠가생긴다. 그리고 전체적으로 보면 C형 CIP법의 결과가 M형 CIP법보다도 진폭의 감쇠가 작다. 즉 C형 CIP법의 해석결과는 축 방향에서 대각 방향으로 향해서 감쇠가 작아지며 대각 방향에서 가장 작아지는 반면 M형 CIP법의 해석결과는 대각 방향에서 추 방향으로향해서 감쇠가 작아지며 축 방향에서 가장 작아진다.

마지막으로 각 해석법에 대한 메모리와 계산시간에

대하여 검토를 하였다. 표 2에 각 해석법에 대한 필요한 메모리와 계산시간을 나타내었다. 여기서 x,y와 z 방향의 격자수를 각각 N_x , N_y 와 N_z 로 하고 $N_x = N_y = N_z = N$ 라 하면 각 해석법의 메모리는 사용한 변수와 총 격자수(N^3)의 곱으로 구하여진다. 단, 이 결과


(b) 3차원 격자의 대각선을 포함한 평면(φ = 45°)그림 8. 전파방향에 대한 규격화된 음속(주파수 : 1024Hz)


Fig. 8 Normalized velocity versus azimuthal angle and elevation angle.

는 외부 흡수경계조건에 대해서는 고려를 하지 않고 있다. 즉, 실제의 자유공간영역을 계산할 경우의 FDTD법 계산에서는 반드시 흡수경계가 필요하므로 그에 따른 메모리와 계산시간이 더 필요해진다.

표에서 같은 이산화조건에서는 FDTD법의 메모리와 계산시간이 가장 적다는 것을 알 수 있다. 그러나지금까지의 결과에서 알 수 있듯이 CIP법은 FDTD법

에 비해서 압도적으로 수치분산성이 적고, 이 두 해석 법으로 같은 정밀도를 실현할 것 같으면 CIP법이 계

(b) 3차원 격자의 대각선을 포함한 평면(φ = 45°) 그림 9. 전파방향에 대한 진폭비(주파수: 1024Hz) Fig. 9 Amplitude ratio versus azimuthal angle and elevation angle.

산의 손실이 적다. 한편으로 C-1형 CIP법과 C-2형 CIP법을 비교하면 C-1형은 사용메모리와 계산시간 모두 C-2형보다도 많고, 계산 정밀도도 고려해서 종합적으로 생각해보면 C-2형의 쪽이 우위성이 있다고 말할 수 있다. 그리고 M형 CIP법과 C-2형 CIP법을 비교해보면 사용메모리는 동등하고 계산시간은 M형 CIP법이 적지만 계산 정밀도에서는 C-2형 CIP법이 높다. 이 두 해석법의 사이에는 계산시간과 계산정밀도의 교환 조건이 있고 계산대상에 따라서 선택할 필요가 있을 것이다.

표 2. 각 해석법에 대한 메모리와 계산시간 Table 2. Memory and Run-time for each method.

방법	메모리 (×4bytes)	계산 시간
Type C-1 CIP(△=0.05mm)	$32N^3$	1(1559 min)
Type C-2 CIP(\triangle =0.05mm) Type M CIP(\triangle =0.05mm) FDTD(\triangle =0.05mm) FDTD(\triangle =0.025mm) FDTD(2 =0.025mm)	10N ³ 10N ³ 4N ³ 32N ³ 4N ³	0.74 0.371 0.022 0.366 0.026

Ⅳ. 결 론

본 논문에서는 C형 CIP법을 이용한 3차원 음장 해석의 정밀도에 관해서 검토를 하였으며, 위상특성과 전파방향의 영향을 명확히 하였다. 즉 같은 이산화조건에서 C형 CIP해석은 FDTD해석에 비하여 수치분산성이 적지만 많은 사용 메모리와 계산시간이 필요하다. 그리고 C-1형과 C-2형 CIP법은 입방체 격자의대각 방향에서는 축 방향에 비하여 정밀도가 약간 저하하는 것을 알 수 있었다.

그리고 C-2형 CIP법은 C-1형 CIP법보다 사용 메모리와 계산시간이 적고, 계산정밀도도 고려해서 보면유효한 해석법이라는 것이 명확하였다. 이 해석법은 종래의 해석법에 비하여 수치분산성이 적고 펄스적인음원에 대한 시간영역에서의 해석에는 우위적인 해석법이 될 것으로 기대된다.

참고 문헌

- [1] K. S. Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media", IEEE Trans. Antennas Propag., Vol. AP- 14, No. 4, pp. 302-307, May 1966.
- [2] K. S. Kunz and R. J. Luebbers, "The Finite Difference Time Domain Method for Electromagnetics", CRC Press, pp.15-34, 1993.
- [3] D. Botteldooren, "Finite-difference time-domain simulation of low-frequency room acoustic problems", J. Acoust. Soc. Am., Vol. 98, No. 6, pp.3302-3308, 1995.
- [4] Mohammed F. Hadi and Melinda Piket-May,

- "A modified FDTD (2, 4) scheme for modeling electrically largestructures with high-phase accuracy", IEEE Trans. Antennas Propag., Vol. AP-45, No. 2, pp.254- 264, Feb. 1997.
- [5] H. Takewaki, et al., "Cubic interpolated pseudo-particle method(CIP) for solving hyperbolic-type equations", J. Comput. Phys., Vol. 61, pp.261-265, 1985.
- [6] T. Yabe, et al., The constrained interpolation profile method for multiphase analysis, J. of Comput. Phys., Vol. 169, pp.556-593, 2001.
- [7] T. Yabe, et al., CIP method, Morikita Pub. Co., pp.6-43, 2003.
- [8] K. Okubo and N. Takeuchi, "Analysis of an Electromagnetic Field Created by Current Using Constrained Interpolation Profile Method", IEEE Trans. Antennas Propag., pp. 111-119, Jan. 2007.
- [9] K. Okubo, et al., "Consideration on Boundary Condition Between Different Media in the CIP Electromagnetic Field Analysis", Proc. Of the 2006 Inter. IEEE Intl. Symp. on A.P., pp. 76-81, July 2006.

저자 소개

이채봉(Chai-bong Lee)

1985년 2월 : 동아대학교 전자공학 과 졸업 (공학사)

1988년 3월 : 동북대학교 대학원 전기통신공학과 졸업(공학석사)

1992년 3월 : 동북대학교 대학원 전기통신공학과 졸업(공학박사)

1993 ~ 현재 : 동서대학교 전자공학과 부교수※ 주관심분야 : 신호처리, 음향공학

오성관(Sung-qwan Oh)

2007년 3월 : 동서대학교 전자공학 과 졸업 (공학사)

2007년 3월 ~ 현재 : 일본 아끼다 현립대학 재학

※ 주관심분야 : 신호처리, 유한요소 해석