DOI QR코드

DOI QR Code

Analysis of statistical models on temperature at the Suwon city in Korea

수원시 기온의 통계적 모형 연구

  • Lee, Hoonja (Department of Data Information, Pyeongtaek University)
  • 이훈자 (평택대학교 데이터정보학과)
  • Received : 2015.10.29
  • Accepted : 2015.11.20
  • Published : 2015.11.30

Abstract

The change of temperature influences on the various aspect, especially human health, plant and animal's growth, economics, industry, and culture of the country. In this article, the autoregressive error (ARE) model has been considered for analyzing the monthly temperature data at the Suwon monitoring site in Korea. In the ARE model, five meteorological variables, four greenhouse gas variables and five pollution variables are used as the explanatory variables for the temperature data set. The five meteorological variables are wind speed, rainfall, radiation, amount of cloud, and relative humidity. The four greenhouse gas variables are carbon dioxide ($CO_2$), methane ($CH_4$), nitrous oxide ($N_2O$), and chlorofluorocarbon ($CFC_{11}$). And the five air pollution explanatory variables are particulate matter ($PM_{10}$), sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), ozone ($O_3$), and carbon monoxide (CO). Among five meteorological variables, radiation, amount of cloud, and wind speed are more influence on the temperature. The radiation influences during spring, summer and fall, whereas wind speed influences for the winter time. Also, among four greenhouse gas variables and five pollution variables, chlorofluorocarbon, methane, and ozone are more influence on the temperature. The monthly ARE model explained about 43-69% for describing the temperature.

기온의 변화는 인간의 건강뿐 아니라 동식물의 성장, 경제, 사회, 산업, 문화 등의 전 분야에 영향을 준다. 본 연구에서는 수원시 2003년-2012년 기온을 기상자료, 온실가스자료, 대기자료를 이용하여 자기회귀오차 (autoregressive error)모형으로 월별로 분석하였다. 기온을 위한 기상자료로는, 풍속, 강수량, 일사량, 운량, 습도를 사용했고, 온실가스자료는 이산화탄소 ($CO_2$), 메탄 ($CH_4$), 아산화질소 ($N_2O$), 염화불화탄소 ($CFC_{11}$), 대기자료는 미세먼지 ($PM_{10}$), 이산화황 ($SO_2$), 이산화질 소 ($NO_2$), 오존 ($O_3$), 일산화탄소 (CO)을 사용하였다. 기온을 월별 분석한 결과 기상변수로는 일사량, 운량, 풍속이 영향을 많이 주는 것으로 분석되었다. 특히 일사량은 봄, 여름, 가을에 영향을 많이 주고 풍속은 겨울에 영향을 많이 주는 것으로 나타났다. 온실가스변수로는 염화불화탄소와 메탄이 기온에 영향을 많이 주고 대기변수로는 오존이 영향을 많이 주는 것으로 타났다. 자기회귀오차모형으로 월별 기온을 43%~69% 정도 설명할 수 있다.

Keywords

References

  1. Bae, K., Park, J., Kim, J. and Lee, Y. (2013). Analysis of the abstracts of research articles in food related to climate change using a text-mining algorithm. Journal of the Korean Data & Information Science Society, 24, 1429-1437. https://doi.org/10.7465/jkdi.2013.24.6.1429
  2. Cho, S. and Lee, J. (1997). Analysis of economic time series analysis using SAS/ETS, Freedom Academy, Seoul.
  3. IPCC (2007). Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, Cambridge Press, Cambridge, U.K. 976.
  4. Jeong, M. J. and Cho, Y. (2015). An analysis of a winter-time temperature change and an extream cold waves frequency in Korea. Journal of Climate Change Research, 6, 87-84. https://doi.org/10.15531/ksccr.2015.6.2.87
  5. Kim, H. C., Choi, S. K. and Yun, B. R. (2011). A statistical analysis on temperature change and climate variability in Korea. Communications of the Korean Statistical Society, 18, 1-12. https://doi.org/10.5351/CKSS.2011.18.1.001
  6. Kim, H., Do, H. Y. and Kim, Y. (2013). A modeling of daily temperature in Seoul using GLM weather generator. The Korean Journal of Applied Statistics, 26, 413-420. https://doi.org/10.5351/KJAS.2013.26.3.413
  7. Kim, H. K. and Lee, Y. (2013). A study on the density analysis of climatological stations using the correlation integral method in the fractal dimension. Journal of the Korean Data & Information Science Society, 24, 53-62. https://doi.org/10.7465/jkdi.2013.24.1.53
  8. Ko, W. K. (2007). Estimation for change of daily maxima temperature. The Korean Journal of Applied Statistics, 20, 1-9. https://doi.org/10.5351/KJAS.2007.20.1.001
  9. Korea Meteorological Administration (2009). Report of global atmosphere watch 2008, Korea Meteorological Administration, Korea, 178.
  10. Lee, H. (2014). Analysis of statistical models on temperature at the Seosan city in Korea. Journal of the Korean Data & Information Science Society, 25, 1293-1300. https://doi.org/10.7465/jkdi.2014.25.6.1293
  11. Oh, I., Bang, J. and Kim, Y. (2015). Meteorological characteristics in the Ulsan metropolitan region: Focus on air temperature and winds. Journal of Korean Society for Atmospheric Environment, 31, 181-194. https://doi.org/10.5572/KOSAE.2015.31.2.181
  12. Song, C. K., Lee, S. and Yoon, J. S. (2011). A review of the integrated strategy for climate change and air pollution management. Journal of Korean Society for Atmospheric Environment, 27, 805-818. https://doi.org/10.5572/KOSAE.2011.27.6.805
  13. Yoo, H. C. and Kang, H. G. (2010). Comparative analysis of temperature change trend and standard meteorological data in Korea over 40 years. Journal of KIAEBS, 4, 97-103.

Cited by

  1. A study on the violent crime and control factors in Korea vol.27, pp.6, 2016, https://doi.org/10.7465/jkdi.2016.27.6.1511
  2. A study on the temperature guidelines for weapon system test and evaluation in the Korean peninsula vol.27, pp.6, 2016, https://doi.org/10.7465/jkdi.2016.27.6.1593
  3. Generating high resolution of daily mean temperature using statistical models vol.27, pp.5, 2016, https://doi.org/10.7465/jkdi.2016.27.5.1215
  4. 한반도 연해안지역 환경시험기준의 테일러링을 위한 온도기준 설정에 관한 연구 vol.28, pp.6, 2015, https://doi.org/10.7465/jkdi.2017.28.6.1437