• Title/Summary/Keyword: 이방성 판

Search Result 155, Processing Time 0.025 seconds

An Analytical Study on the Buckling of Orthotropic Plates and Local Buckling of Compression Members (직교이방성 판의 좌굴 및 압축재의 국부좌굴에 대한 해석적 연구)

  • Choi, Jin-Woo;Lee, Kang-Yeon;Park, Jung-Hwan;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • In this paper, we present the analytical study results pertaining to the buckling of the orthotropic plates and local buckling of structural compression members composed of orthotropic plate components. Fiber reinforced polymeric plastic (FRP) materials, have many advantages over conventional structural materials such as steel and concrete. The advantages of the FRP materials are high specific strength and stiffness, high corrosion resistance, right weight, etc. Among the various manufacturing methods, pultrusion process is one of the best choices for the mass production of structural plastic members. Since the major reinforcing fibers are placed along the axial direction of the member, this material is usually considered as an orthotropic (tranversely isotropic, more specifically) material. However, pultruded fiber reinforced plastic structural members have low modulus of elasticity and are composed of orthotropic thin plate components the members are prone to buckle. Therefore, stability is an important issue in the design of the pultruded FRP structural members. In this paper, the buckling of orthotropic plates and the local buckling of pultruded FRP structural members are investigated by following the previous research results and the local buckling strength of the member produced in the domestic manufacturer is found.

직교이방성 판 내에서의 균열전파 해석

  • 김만원;박재학
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.251-256
    • /
    • 2000
  • 이방성 재료에서 균열의 성장을 예측하는 것은 실제 구조물의 안전성을 정확하게 해석하기 위한 중요한 문제이다. 이방성 재료 내에서의 균열의 거동은 등방성 재료의 경우와는 다르기 때문에 이방성 재료 내의 균열 해석 문제가 중요한 관심을 끌게 되었다. 비등방성 재료에 대한 지금까지의 연구는 대부분 직선균열의 해석, 직선균열의 초기 전파 각도에 대한 해석에 대하여 이루어져 왔고 곡선 균열에 대한 연구[1-4]는 많이 이루어지지 않았다.(중략)

  • PDF

The Influence of the Aspect Ratio on the Natural Frequency of the Specially Orthotropic Laminated Plates (특별직교이방성 적층판의 고유진동수에 대한 형상비의 영향)

  • Han, Bong Koo;Kim, Duck Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.219-225
    • /
    • 2011
  • Advanced composite structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. The simply supported laminated plates are analyzed by the specially orthotropic laminates theory. This method, however, may be too difficult for some practising engineers. In this paper, the result of analysis for such plate by means of the beam theory with unit width is reported. The plate aspect ratio considered is from 1 : 1 to 1 : 5. Most of the bridge and building slabs on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms($M_x$) on the relevant partial differential equations of equilibrium. In this paper. the influence of the aspect ratio on the natural frequency of the specially orthotropic laminated plates is studied and it is concluded that the method used is sufficiently accurate for engineering purposes. The result of this paper can be used for simply supported laminated plates analysis.

Estimation of Orthotropic Flexural Rigidities Considering the Deformed Shape for a Plate Stiffened with Rectangular Ribs (변형 형상을 고려한 평강 리브 보강판의 직교이방성 휨강성 산정)

  • Chu, Seok Beom;Im, Kwan Hyuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.621-632
    • /
    • 2007
  • The purpose of this study was the estimation and formulation of orthotropic flexural rigidities considering the deformed shape for a plate stiffened with rectangular ribs. Analytical results of methods modifying the flexural rigidity of the x-direction, the y-direction or both directions were compared at the center, the x-directional quarter point and the y-directional quarter point of stiffened plates loaded at the center. The composite method modifying the flexural rigidity of both directions improves the accuracy compared with the other methods. Moreover, the ratio of modified coefficients for each directional rigidity can be expressed as a function corresponding to each dimension of stiffened plates. The application of modified coefficient functions to various types of stiffened plates with different boundary conditions, aspect ratios and rib arrangement shows that the increment of the error ratio is small compared with examples of this study and the application of proposed functions shows more accurate results than previous methods modifying the flexural rigidity. Therefore, by using the modified coefficient functions proposed in this study, the orthotropic plate analysis of plates stiffened with rectangular ribs can easily achieve more accurate displacement results.

A Efficient Vibration Analysis Method for the Cooncrete-Steel Deck Slab (콘크리트와 강제데크의 합성 바닥판의 실용적인 진동해석 방법)

  • Kim, Gee-Cheol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.91-100
    • /
    • 2005
  • Composite slab structures consisted with steel deck plate and concrete material show generally anisotropic structural behavior because of different stiffness between the major direction and sub-direction of deck plate, and also the structures can be regarded as the laminated slab structures. It is necessary for the composite deck slab structures to carry out the exact vibration analysis to evaluate the serviceability. Also, it is needed to evaluate the exact structural behavior of composite deck slab with a layered orthotropic materials. In this paper, the thickness of topping concrete and deck plate are used to calculate the material coefficient stiffness of a sub-direction, and an equivalent depth calculated from sectional stiffness of concrete and deck plate is applied to get the stiffness of a major direction. The stiffness of two layered composite plates with different depth is determined by laminated theory. It is concluded that the presented method can efficiently analyze the structural behavior of composite deck slab consisted with steel deck plate and concrete material in the practical engineering field.

  • PDF

A Practical Method of Acoustic Emission Source Location in Anisotropic Composite Laminates (이방성 적층복합재 구조에서 AE 발생원 위치표정을 위한 실용적인 방법)

  • Kim, Jeong-Kon;Kang, Yong-Kyu;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.237-245
    • /
    • 2003
  • Since the velocity is dependent on the fiber orientation in anisotropic composites, the application of traditional acoustic emission (AE) source location techniques based on the constant velocity to composite structures has been practically impossible. The anisotropy makes the source location procedure complicated and deteriorates the accuracy of the location. In this study, we have divided the region of interest(ROI) into a set of finite elements, taken each element as a virtual source, and calculated the arrival time differences between sensors by using the velocities at every degree from 0 to 90. The calculated and the experimentally measured values of the arrival time difference aye then compared to minimize the location error. The results from two different materials, namely AA6061-T6 and CFRP(uni-directional; UD, $[0]_{32}4$) laminate confirmed the practical usefulness of the proposed method.

Analysis of Rolled Beam Bridge by means of Specially Orthotropic Laminates Theory (특별직교이방성 적층판이론에 의한 압연형교의 해석)

  • Han, Bong-Koo;Lee, Chang-Soo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.35-40
    • /
    • 2010
  • The specially orthotropic plate theory is used for analysis of panels made of girders and cross-beams. The cross-sections of both girders and cross-beams are H-types. The results of application of this method to rolled beam bridge by using specially orthotropic plate theory is presented. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. According to numerical examination given in this paper, the result by the plate theory is 2.43 times stiffer than that of beam theory.

  • PDF

Elastic Buckling Strength of Orthotropic Plate under Combined In-Plane Shear and Bending Forces (면내 전단력과 휨을 동시에 받는 직교이방성판의 탄성좌굴강도)

  • 윤순종;박봉현;정상균
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.46-52
    • /
    • 1999
  • In this paper result of an analytical investigation pertaining to the elastic buckling behavior of orthotropic plate under combined in-plane shear and bending forces is presented. The existing analytical solution developed for the isotropic plates is extended so that the orthotropic material properties can be taken into account in the buckling analysis of web plate. For the solution of the problems Rayleigh-Ritz method is employed. Graphical form of results for finding the elastic buckling strength of orthotropic plate under combined in-plane shear and bending forces is presented. Brief discussion on the design criteria for the shear and bending interaction is also presented.

  • PDF

Vibration and Damping Characteristic of Composite Laminates Embedding Directional Damping Materials (방향성 있는 감쇠재료가 삽입된 복합적층판의 진동 및 감쇠특성)

  • 김성준
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.39-44
    • /
    • 2003
  • Embedding viscoelastic-damping materials into composites can greatly increase the damping properties of composite structures. Usually viscoelastic-damping materials behave isotropically so that their damping properties are the same in all directions. In these days, there is a desire to develop viscoelastic-damping materials that behave orthotropically so that damping properties vary with material orientation. These orthotropic damping materials can be made by embedding rows of thin wires within the viscoelastic materials. These wires add significant directional stiffness to the damping materials. where the stiffness variation with wire orientation follows classical lamination theory. In this paper, the loss factor of composite laminate was evaluated based on Ni and Adams' theory. To investigate the effect of directional damping material, the low-velociy impact response analysis was also performed. The present analysis results show that directional damping material has a great influence on vibration and damping characteristic of composite laminate.

Elastic Shear Buckling of Transversely Stiffened Orthotropic Web Plates (수직보강된 직교이방성 복부판의 전단탄성좌굴)

  • S.J. Yoon;J.H. Jung
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.37-43
    • /
    • 2000
  • In this paper an analytical investigation pertaining to the elastic shear buckling behavior of transversely stiffened orthotropic plate under in-plane shear forces is presented. All edges of plate are assumed to be simply supported and the evenly placed stiffener is considered as a beam element neglecting its torsional rigidity. For the solution of the problem Rayleigh-Ritz method is employed. Using the derived equation, the limit of buckling stress of transversely stiffened plate is suggested as a graphical form. Based on the limit of buckling stress of stiffened plate, graphical form of results for finding the required stiffener rigidity is presented when one and two stiffeners are located, respectively.

  • PDF