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ABSTRACT
The specially orthotropic plate theory is used for analysis of panels made of girders and cross-beams. The 
cross-sections of both girders and cross-beams are H-types. The results of application of this method to rolled beam 
bridge by using specially orthotropic plate theory is presented. The result is compared with that of the beam 
theory. Finite difference method is used for this purpose. The influence of the D 22 stiffness on the natural 
frequency is rigorously investigated. According to numerical examination given in this paper, the result by the plate 
theory is 2.43 times stiffer than that of beam theory.

요    지

본 연구에서는 거더와 가로보로 이루어진 패널을 특별직교이방성 판 이론을 응용하여 해석하였다. 거더와 가로보는 
H 형단면을 사용하였다. 본 논문에서는 특별직교이방성 판 이론을 압연형교에 응용하였으며 해석한 결과를 제시하
였다. 해석결과는 보 이론과 비교하였다. 이러한 목적으로 본 논문에서는 유한차분법을 사용하였다. 고유진동수에 

대한 D 22 강성의 영향을 철저히 검토하였다. 본 연구에서는 판 이론에 의해 수치해석을 해본 결과 보 이론보다 강

성이 2.43배가 되는 것을 알 수 있었다. 
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1.  INTRODUCTION

The problem of deteriorated highway slabs is very serious all 
over the world. Before making any decision on repair work, 
reliable evaluation is necessary. One of the non-destructive 
methods is to evaluate the in-situ stiffness of the slab by 
obtaining the natural frequencies of the system. By comparing 
the in-situ stiffness with the one obtained at the design stage, 
the degree of damage can be estimated.

There are several means for slab system analysis such as
(1) Beam strip method
(2) Composite beam theory between
   concrete slab and steel beams 
(3) Gird analysis method for cross beams and girders
The 3.1 Elevated Expressway in seoul, designed and built 

in 1967, used less than half of steel required by other best 
design at that time (Kim, 1968). The methods used were,

(1) Grid analysis
(2) Composite action
(3) Use of welding
(4) Use of hybrid materials
(5) Use of high tension bolt and others.

Several existing design methods are studied and compared. 
An extensive references are also given.

A method of calculating the natural frequencies 
corresponding to the modes of vibration of beams and tower 
structures with irregular cross sections and arbitrary boundary 
conditions was developed (Kim, 1995, Han et al., 2001, 
2004, 2009, 2010).

In case of a bridge grid system with girders and 
cross-beams, tables and methods by Leonhard (1950), 
Homberg (1956), Massonnet (1955), Watanabe (1966), Kim 
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(1968), and others can be used. Use of orthotropic plate 
theory in bridge design was reported by Chu and 
Krishnamoorthy (1963). Adotte (1967) reported second order 
theory in orthotropic plates. Hongladaromp et al.(1968) 
reported analysis of elasto-plastic grid system.

Many of the bridge and building floor systems, including 
the girders and cross- beams, and decks behave as the 
specially orthotripic plates which have [0°, 90°,0°]r fiber 
orientations.

2. METHOD OF ANALYSIS 

The equilibrium equation for the specially orthotropic plate 
is : 

D 1

∂ 4w
∂x 4 + 2D 3

∂ 4w
∂x 2∂y 2 + D 2

∂ 4w
∂y 4 = q( x, y)     (1)

where D 1 = D 11,D 2= D 22,D 3= D 12+ 2D 66

The assumptions needed for this equation are :
(1) The transverse shear deformation is neglected.
(2) Specially orthotropic layers are arran- ged so that no  
   coupling terms exist, i.e.,       .
(3) No temperature or hygrothermal terms exist.
The purpose of this paper is to demonstrate, to the 

practicing engineers, how to apply this equation to the slab 
systems made of plate girders and cross-beams.

In case of an orthotropic plate with boundary conditions 
other than Navier or Levy solution type, or with irregular 
cross section, or with nonuniform mass including point 
masses, analytical solution is very difficult to obtain. 
Numerical methods for eigenvalue problems are also very 
much involved in seeking such a solution. Finite difference 
method (F.D.M) is used in this paper. The resulting linear 
algebraic equations can be used for any cases with minor 
modifications at the boundaries, and so on.

The problem of deteriorating infrastructures is very serious 
all over the world. Before making any decision on repair 
work, reliable non-destructive evaluation is necessary. One of 
the dependable methods is to evaluate the in-situ stiffness of 
the structure by means of obtaining the natural frequency. By 
comparing the in-situ stiffness with the one obtained at the 
design stage, the degree of damage can be estimated rather 
accurately.

The basic concept of the Rayleigh method, the most 
popular analytical method for vibration analysis of a single 
degree of freedom system, is the principle of conservation of 

energy ; the energy in a free vibrating system must remain 
constant if no damping forces act to absorb it. In case of a 
beam, which has an infinite number of degree of freedom, it 
is necessary to assume a shape function in order to reduce 
the beam to a single degree of freedom system(Clough 1995). 
The frequency of vibration can be found by equating the 
maximum strain energy developed during the motion to the 
maximum kinetic energy. This method, however, yields the 
solution either equal to or larger than the real one. Recall 
that Rayleigh's quotient ≥1 (Kim, 1995). For a complex 
beam, assuming a correct shape function is not possible. In 
such cases, the solution obtained is larger than the real one.

Design engineers need to calculate the natural frequencies 
of such element but obtaining exact solution to such 
problems is very much difficult. Pretlove reported a method 
of analysis of beams with attached masses using the concept 
of effective mass. This method, however, is useful only for 
certain simple types of beams. Such problems can be easily 
solved by presented method.

A simple but exact method of calculating the natural 
frequency corresponding to the first mode of vibration of 
beam and tower structures with irregular cross- sections and 
attached mass/masses was developed and reported by Kim in 
1974. This method consists of deter- mining the deflected 
mode shape of the member due to the inertia force under 
resonance condition. Beginning with initially “guessed” mode 
shape, “exact” mode shape is obtained by the process similar 
to iteration. Recently, this method was extended to two 
dimensional problems including composite laminates, and has 
been applied to composite plates with various boundary 
conditions with/without shear deformation effects and reported 
at several international conferences including the Eighth 
Structures Congress (1990) and Fourth Materials Congress 
(1996) of American Society of Civil Engineers.

This method is used for vibration analysis in this paper.
A natural frequency of a structure is the frequency under 

which the deflected mode shape corresponding to this 
frequency begins to diverge under the resonance condition. 
From the deflection caused by the free vibration, the force 
required to make this deflection can be found, and from this 
force, resulting deflection can be obtained. If the mode shape 
as determined by the series of this process is sufficiently 
accurate, then the relative deflections (maximum) of both the 
converged and the previous one should remain unchanged 
under the inertia force related with this natural frequency. 
Vibration of a structure is a harmonic motion and the 
amplitude may contain a part expressed by a trigonometric 
function. Considering only the first mode as a start, the 
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deflection shape of a structural member can be expressed as

   w = W ( x, y ) F ( t) = W ( x, y ) s in ω t       (2)

where
W : maximum amplitude
ω : circular frequency of vibration
t : time

By Newton's second law, the dynamic force of the 
vibrating mass, m, is

              F = m
∂ 2w
∂ t 2               (3)

Substituting (2) into this,

          F = - m (ω ) 2 W sinωt            (4)

In this expression, ω and W are unknowns. In order to 
obtain the natural circular frequency, ω, the following 
process is taken.

The magnitudes of the maximum deflection at a certain 
number of points are arbitrarily given as

           w(i,j)(1) = W (i,j)(1)                (5)

where (i,j) denotes the point under consideration. This is 
absolutely arbitrary but educated guessing is good for accel  
erating convergence. The dynamic force corresponding to this 
(maximum) amplitude is

      F(i,j)(1)=m(i,j){ ω(i,j)(1)}2w(i,j)(1)            (6)

The “new” deflection caused by this force is a function of 
F and can be expressed as

 w(i,j)(2)=f{m(k,l){ ω(i,j)(1)}2 w(k,l)(1)}=

∑
k.l

△(i,j,k,l){m(k,l){ ω(i,j)(1)}2 w(k,l)(1)}             (7)

where △ is the deflection influence surface. The relative 
(maximum) deflections at each point under consideration of a 
structural member under resonance condition, w(i,j)(1) and 
w(i,j)(2), have to remain unchanged and the following 
condition has to be held : 

          w(i,j)(1) / w(i,j)(2)=1.               (8)

From this equation, w(i,j)(1) at each point of (i,j) can be 
obtained, but they are not equal in most cases. Since the 
natural frequency of a structural member has to be equal at 
all points of the member, i.e., w(i,j) should be equal for all 
(i,j), this step is repeated until sufficient equal magnitude of 
w(i,j) is obtained at all (i,j) points.

However, in most cases, the difference between the 
maximum and the minimum values of w(i,j) obtained by the 
first cycle of calculation is sufficiently negligible for 
engineering purposes. The accuracy can be improved by 
simply taking the average of the maximum and the minimum, 
or by taking the value of w(i,j) where the deflection is the 
maximum. For the second cycle, w(i,j)(2) in

      w(i,j)(3) =f{m(i,j) [ ω(i,j)(2) ] 2w(i,j)(2)}       (9)

the absolute numerics of w(i,j)(2) can be used for 
convenience.

In case of a structural member with irregular section 
including composite one, and non-uniformly distributed mass, 
regardless of the boundary conditions, it is convenient to 
consider the member as divided by finite number of elements. 
The accuracy of the result is proportional to the accuracy of 
the deflection calculation.

For practical design purposes, it is desirable to simplify the 
vibration analysis procedure. One of the methods is to neglect 
the weight of the structural element. The effect of neglecting 
the weight (thus mass) of the plate is studied as follow. If a 
weightless plate is acted upon by a concentrated load,  
P=N⋅q⋅a⋅b, the critical circular frequency of this plate is

                ω n = g
δ st

 (10)

where δ st is the static deflection.
Similar result can be obtained by the use of Eqs. (7) and 

(8).

[ ω(i,j) ] 2 = 1

〔△ ( i, j, i, j)⋅
P( i, j)

g
〕

 (11)

where, 
        P( i, j ) = N⋅q⋅a⋅b                     (12)

In case of the plate with more than one concentrated loads,

[ω(i,j) ] 2 = 1

〔∑
k.l

△ ( i, j,k, l)․
P(k, l)

g
〕

(13)
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Fig. 1 Structure under consideration

Fig. 2 Cross-section

If we consider the mass of the plate as well as the 
concentrated loads,

 w(i,j)(1) = w(i,j)(2)

= { ∑
k.l

△ (i,j,k,l)․m(k,l)․w(k,l)(1)

    + ∑
m.n

△ (i,j,m,n)․ P(m, n )
g

․w(m,n)(1)}

    ×[ ω(i,j)(1) ] 2  (14)

where (m,n) is the location of the concentrated loads. The 
effect of neglecting the weight of the plate can be found by 
simply comparing Eqs. (13) and (14).

The method used in this paper requires the deflection 
influence surfaces. F. D. M. is applied to the governing 
equation of the specially orthotropic plates.

The number of the pivotal points required in the case of 
the order of error △2, where △ is the mesh size, is five for 
the central differences of the fourth order single derivative 
terms. This makes the procedure at the boundaries 
complicated. In order to solve such problem, the three 
simultaneous partial differential equations of equilibrium with 
three dependent variables, w, Mx, and My, are used instead 
of Eq.(1) for the bending of the specially orthotropic plate.

     D 1

∂ 2Mx
∂x 2 - 4D 66

∂ 4w
∂x 2∂y 2 +

∂ 2My
∂y 2

      =- q(x,y)+ kw(x,y)       (15)

     M x= - D 11

∂ 2w
∂x 2 - D 12

∂ 2w
∂y 2  (16)

     M y = - D 12

∂ 2w
∂x 2 - D 22

∂ 2w
∂y 2  (17)

If F. D. M. is applied to these equations, the resulting 
matrix equation is very large in sizes, but the tridiagonal 
matrix calculation scheme used by Kim is very efficient to 
solve such equations (Kim, 1967).

In order to confirm the accuracy of the F.D.M., [A/B/A]r 
type laminate with aspect ratio of a/b=1m/1m=1 is 
considered.

For simplicity, it is assumed that A=00, B=900, and r=1. 
Since one of the few efficient analytical solutions of the 
specially orthotropic plate is Navier solution, and this is good 
for the case of the four edges simple supported, F.D.M. is 
used to solve this problem and the result is compared with 
the Navier solution.

Calculation is carried out with different mesh sizes and the 
maximum errors at the center of the plate are as follows.

       10 x 10  case : 0.140 %

       20 x 20  case : 0.035 %
       40 x 40  case : 0.009 %

The error is less than 1%. This is smaller than the 
predicted theoretical errors ;

E s = 200,000 MPa,   

- Girder - - Cross-beam -

H L = 500mm H T = 300 mm

B L = 200mm B T = 150mm

T 1 L
= 15 mm T 1 T

= 10 mm

T 2 L
= 20 mm T 2 T

= 18.5 mm

3. NUMERICAL EXAMINATION

The structure under consideration is as shown in Figs.1 
and 2. The stiffnesses are given in Table 1. Type 1 is for the 
specially orthotropic plate and Type 2 is the case of a simple 
beam. In oder to a study the effect of the cross-beam sizes, 
variable values of D 2 2  are given, in Table 2.
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 ⋅ Type 1 Type 2

D 11

D 22

101199927.65

21757837.94

101199927.65

0.00

Table 1. Stiffnesses

 ⋅ Case 1 Case 2 Case 3

D 11

D 22

101199927.6

21757837.94

101199927.6

41618360.36

101199927.6

61478882.78

Table 2. Stiffnesses with variable D 2 2

Type 1 2
Type2

Type1

δ(m) 0.06765 0.16460 2.43

Table 3. Deflection at the center (m)
        Loading : 100 kN at the center

Case 1 2 3 4 5

δ(m) 0.06765 0.06262 0.06061 0.05951 0.05881

Case1/

Case i
1.0 1.0803 1.1162 1.1368 1.1503

Table 4. Deflection at the center (m)
        Loading : 100 kN at the center

Type 1 2
Type2/

Type1

w(rad/ sec ) 7.313 5.133 0.7019

Table 5. Natural Frequency (rad/sec).
        Loading : 100 kN at the center

Case 1 2 3 4 5

w(r ad/ sec ) 7.313 7.471 7.539 7.577 7.603

Case I /

Case 1
1.0 1.0216 1.0309 1.0361 1.0397

Table 6. Natural Frequency (rad/sec)
        Loading : 100 kN at the center
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   Fig. 3 Deflection of each type and case.
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Fig. 4 Natural Frequency of each type and 
case.

Analysis is carried out and the result is given by Tables 
from 3 to 6. As Table 3 shows, the deflection of Type 2, 
based on beam theory, is 2.43 times that of specially 
orthotropic theory. Increase of the cross-beam sizes does not 
produce profound change of deflection, Table 4. Similar 
conclusion can obtained from the frequency, Table 5 and 6. 
These results are also shown in Figs. 3 and 4.

The specially orthotropic plate theory yields much stiffer 
structure than by beam theory. Increase of 22 is 

insignificant. The result given by Table 2 to 6 are given 
by Figs 1 and 2.

4. CONCLUSION

 The purpose of this paper is to demonstrate, to the 
practicing engineers, how to apply the specially orthotropic 
plate theory to the slab systems made of plate girders and 
cross-beams. 

The numerical examination made shows that the result by 
the specially orthotropic plate is 2.43 times stiffer than that 
by the beam theory. The influence of D3 is a subject to the 
future research since exact calculation of this stiffness 
requires which section to use for the moment of inertia, the 
degree of fixity between the cross-beams and the girders, and 
others.
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