• Title/Summary/Keyword: 이론구속응력

Search Result 45, Processing Time 0.033 seconds

Development of Multi Layered Elastic Pavement Analysis Program Package Considering Temperature Nonlinearty of Asphalt Layer on GUI Environment (아스팔트층 온도 비선형성을 고려한 사용자 편의환경의 다층탄성 프로그램 개발)

  • Choi, Jun-Seong;Seo, Joo-Won;Park, Keun-Bo;Kim, Soo-Il
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.91-101
    • /
    • 2008
  • A multi layered elastic analysis program, IDYSPAP, was developed. The objective of this study was to develop the IDYSPAP program on Graphic User Interface environment for field engineers using Visual Basic, which was considered span of multi-wheels and maximum 4 axles using superposition of linear elastic theorem. It is suggested that this study considers algorithm with dynamic properties of asphalt layer on various temperature and non-linear properties of subbase and subgrade on stress non-linearity for asphalt pavement structure. This Program was modified to divide asphalt layer automatically according to layer division concept. The developed program was verified with initial measuring data in test road sections of KEC (Korea Expressway Co.) using laboratory test results.

  • PDF

Long-Term Torsional Analysis of Prestressed Concrete Members with the Effects of Creep and Shrinkage (크리이프 및 건조수축의 영향을 고려한 프리스트레스트콘크리트 부재의 장기 비틀림 해석)

  • Oh, Byung Hwan;Park, Chang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.741-749
    • /
    • 1994
  • The purpose of the present study is to propose a realistic method to analyze the prestressed concrete members subjected to long term torsional loading. The present study devises a method to realistically take into account the tensile stiffness of concrete after cracking. The effects of biaxial compressive and tensile loadings on the compressive and tensile strengths of concrete are also taken into account in the present model. The salient feature of the present study lies in the fact that the cracking, creep, and shrinkage behavior of concrete and the relaxation of steel have been realistically considered. The comparison of the present theory with experimental data indicates that the proposed model dipicts reasonably well the actual behavior of prestressed concrete members under long-term torsional loadings.

  • PDF

A New Method of Liquefaction Evaluation Based on Disturbed State Concept (교란상태개념에 기초한 새로운 액상화 평가 방법)

  • 박인준;김수일
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.45-55
    • /
    • 1998
  • Although a number of methods have been proposed to predict the liquefaction potential, few methods have been developed by using the characteristic of material's microstructure. In this research, fundamental procedure is proposed for the assessment of liquefaction potential in saturated soils based on the Disturbed Sate Concept(DSC) model which can provide a unified constitutive model for the characterization of entire stress-strain behavior under cyclic loading. From this concept, the value of disturbance at threshold state (Critical Disturbance, $D_C$) in the deforming microstructure provides the basis for initial liquefaction. This method is verified with respect to data from Cyclic Truly Triaxial test for saturated Ottawa sand. Also, the relationship between liquefaction and initial confinig stress is defined using definition of $D_C$. It is believed that the new procedure for identifying liquefaction based on the DSC model can capture the behavior of liquefation, and as a result, it is shown to be on improvement over the available empirical procedures.

  • PDF

Geometrically Non-linear Finite Element Analysis of Space Frames (공간뼈대구조의 기하학적 비선형 유한요소해석)

  • 김문영;안성원
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.201-211
    • /
    • 1997
  • A clearly consistent finite element formulation for geometrically non-linear analysis of space frames is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for symmetric cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, elastic and geometric stiffness matrices of the space frame element are derived by using the Hermitian polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines of the frame element due to rigid body rotations and incremental member forces from pure deformaions. Finite element solutions for the spatial buckling and post-buckling analysis of space frames are compared with available solutions and other researcher's results.

  • PDF

Flowability and Strength of Self-compacting Concrete Mixed with Tailings from the Sangdong Tungsten Mine (상동관상 광미를 혼합한 자기충전콘크리트의 유동 및 강도 특성)

  • Choi, Yun Wang;Kim, Yong Jic;Jung, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.767-774
    • /
    • 2006
  • This study has focused on the possibility for recycling of tailings from the sangdong tungsten mine as powder (TA) of self-compacting concrete (SCC). The experimental tests for entrapped water ratio were carried out in accordance with the specified method by Okamura. The rheological measurements of cement paste were conducted by using a commercially digital Brookfield viscometer (Model LVDV-II+) equipped with cylindrical spindles, also tests for slump-flow, time required to reach 500 mm of slump flow (sec), time required to flow through V-funnel (sec) and filling height of U-box test (mm) were carried out in accordance with the specified by the Japanese Society of Civil Engineering (JSCE). The results of this study, entrapped water ratio was decreased with increasing replacement of TA. Thickness of pseudo water film was increased, and mean plastic viscosity was decreased with increasing replacement of TA. And slump-flow of SCC was decreased with increasing replacement of TA. But time required to reach 500 mm of slump flow (sec), time required to flow through V-funnel (sec) and filling height of U-box test (mm) were satisfied a prescribed range. The mechanical properties including compressive strength, splitting tensile strength and elastic modulus were checked with the requirements specified by Korean Industrial Standard (KS). The compressive strength of SCC was decreased with increasing replacement of TA, splitting tensile strength and elastic modulus were similar to those of normal concrete.

Shear Strength Characteristics of Weathered Granite Soil below the Freezing Point (동결온도 조건에서의 화강풍화토 전단강도 특성에 관한 연구)

  • Lee, Joonyong;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.19-29
    • /
    • 2013
  • Analysis via classical soil mechanics theory is either ineffective or inappropriate for fully describing stress distribution or failure conditions in cold regions, since mechanical properties of soils in cold regions are different from those reported in the classical soil mechanics theory. Therefore, collecting and analyzing technical data, and systematic and specialized research for cold regions are required for design and construction of the structure in cold regions. Freezing and thawing repeat in active layer of permafrost region, and a loading condition affecting the structure changes. Therefore, the reliable analysis of mechanical properties of frozen soils according to various conditions is prerequisite for design and construction of the structure in cold regions, since mechanical properties of frozen soils are sensitive to temperature condition, water content, grain size, relative density, and loading rate. In this research, the direct shear apparatus which operates at 30 degrees below zero and large-scaled low temperature chamber are used for evaluating shear strength characteristics of frozen soils. Weathered granite soil is used to analyzed the shear strength characteristics with varying freezing temperature condition, vertical confining pressure, relative density, and water content. This research shows that the shear strength of weathered granite soil is sensitively affected by various conditions such as freezing temperature conditions, normal stresses, relative densities, and water contents.

A Study on the Estimation of In-situ Undrained Shear Strength Using Effective Stress Paths of Reconstituted Sample by Unconfined Compression Test (재구성 시료의 일축압축시험에서 유효응력경로를 이용한 원지반의 비배수 전단강도 추정에 관한 연구)

  • 박성재;오원택;정경환;여주태
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.93-102
    • /
    • 2003
  • Unconfined compression test (UC) has been widely used to determine the undrained shear strength ($c_u$) of clay, because it is convenient and economical. However, UC can not represent the behaviour of in-situ stress condition and the strength obtained by the test is generally underestimated compared to that of triaxial compression, due to no confining pressure. Therefore, a simple and practical method to correct the ($c_u$) for sample disturbance and to be used in geotechnical practice is needed. This study is aimed at proposing the method to estimate in-situ undrained shear strength from UC with suction measurement. The proposed method is based on theoretical shear strength equation of perfect sample (Noorany & Seed, 1965), and effective overburden stress and analysis results ($A_f,\phi'$) of effective stress behaviour by UC are needed for the equation. The shear resistance angle ($\phi'$) can be simply estimated through the result that $K_f$-line slope of the UC is 1.6 times higher than that of triaxial compression test. The result of this study shows that the measured strength by this method is very similar to that of the undrained shear strength by triaxial compression test (CK$_0$UC).

Parametric Study of MD Constitutive Model for Coarse-Grained Soils (조립재료에 대한 MD구성모델의 매개 변수 연구)

  • Choi, Changho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • Coarse-grained soils are typical engineering materials commonly used in many civil engineering applications such as structural fills, subgrade and drainage fills for dam, railway and bridge. Various researches have been performed with related to constitutive laws for numerical analysis of such structures. This paper presents a parametric study for a constitutive model for coarse grained materials. The model is a kind of the bounding surface models based on critical state theory. A distinct feature of the model is to capture the response of coarse-grained materials with different void ratios and confining pressures using a single set of model parameters. The model behavior is defined with a set of elastic parameters, critical state parameters, and model-specific parameters. The parametric study was performed for the model-specific parameters. The result of parametric study shows that the model is capable to capture stress-dilatancy behavior and kinematic-hardening under non-associative plastic flow.

Optimization of Soil-Nailing Designs Considering Three Failure Modes (쏘일네일링의 세 가지 파괴모드를 고려한 설계 최적화에 대한 연구)

  • Seo, Hyung-Joon;Lee, Gang-Hyun;Park, Jeong-Jun;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.5-16
    • /
    • 2012
  • Soil-nailing is the most popular method of reinforcing for slope stability. In general, two factors are considered as failure modes during the soil-nailing design stages: pullout failure mode and shear failure mode that will occur on the most probable failure plane. In many cases, however, shallow failure can also occur when the ground near the slope face is swept away by the horizontal stress release during the staged top-down excavation. In this paper, an optimized soil-nailing design methodology is proposed by considering the three failure modes mentioned above: pullout failure; shear failure; and shallow failure. The variables to be optimized include the bonded length and number of soil-nailings, and the confining pressure that should be applied at the slope face. The procedure to obtain the optimized design variables is as follows: at first, optimization of soil-nailings, i.e. bonded length and number, against pullout and shear failure modes; and then, optimization of confining pressure at each excavation stage that is needed to prevent shallow failure. Since the two processes are linked with each other, they are repeated until the optimized design variables can be obtained satisfying all the constrained design requirements in both of the two processes.

Inherent Strength Anisotropy of the Shale in Daegu Region (대구지역 셰일 압축강도의 고유이방성에 관한 연구)

  • Lee, Younghuy;Kim, Heedong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.45-51
    • /
    • 2008
  • Triaxial compression tests on anisotropic rock specimens are carried out to investigate the failure strength characteristic of anisotropic rocks. The test core specimens were obtained in Daegu region. Test specimens are rock cores with the 7 different angles of bedding plane. The applied confining pressures were 5, 10, 20, 30, 40 MPa, and the rate of displacement was adopted 0.1%/min to fail the specimen within 5-15 min. The results were analyzed by using the failure criteria for anisotropic rocks proposed by Hoek & Brown (1980) and Jaeger (1960). The results of this study are summerised as follows: The results of inherent anisotropy show the shoulder type of anisotropy, and the effect of anisotropy is reduced as the confining pressure increases. The compressive strength of anisotropic rock shows the highest value at the ${\beta}$ (the angle of bedding plane) = $0^{\circ}$ and $90^{\circ}$ and the lowest value at $30^{\circ}$. The Hoek & Brown failure criterion for anisotropic rocks gives a relatively good agreement with the measured strength in all the range of ${\beta}$ angles, but the theory of Jaeger shows a reasonable agreement only in the range of ${\beta}=15^{\circ}$ and $45^{\circ}$.

  • PDF