• Title/Summary/Keyword: 의사결정트리 알고리즘

Search Result 80, Processing Time 0.028 seconds

Multiple Pedestrian Tracking based on Decision Trees (의사결정 트리 기반의 다중 보행자 추적)

  • Yu, Hye-Yeon;Kim, Young-Nam;Kim, Moon-Hyun
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1302-1304
    • /
    • 2015
  • 컴퓨터 비전에서 다수의 보행자 궤적을 생성하는 문제는 여전히 어려운 문제이다. 전경에서 추출된 보행자 윤곽은 음영과 밝기 등의 문제로 윤곽이 명확하지 않고, 보행자들이 서로 다른 방향으로 움직이며 상호작용을 한다. 이로 인해 보행자를 식별하고 궤적을 생성하기에는 다소 어려움이 있다. 우리는 의사결정 트리를 사용하여 보행자 영역의 병합과 분할 상황을 개별 분리된 보행자로 검출한다. 검출된 개별 보행자는 점 대응 알고리즘으로 각 보행자의 궤적을 생성한다. 우리는 수정된 $A^*$ 검색 알고리즘으로 새로운 휴리스틱 점 대응 알고리즘을 소개한다. 우리의 실험은 PETS2010 데이터 세트로 구현되고 실험했다.

Analysis on the Enemy's Main Strike Direction Using Decision Tree (의사결정트리를 이용한 적 주타격 방향 분석)

  • Kim, Moo-Soo;Park, Gun-Woo;Lee, Sang-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.66-68
    • /
    • 2012
  • 적의 주타격 방향은 적 지휘관의 주요 결정사항 중에 하나이다. 이런 적의 주타격 방향에 영향을 미치는 요소들을 분석하여 예측할 수 있다면 전쟁에서 좀 더 유리한 여건을 조성할 수 있을 것이다. 그러나 현재 군에서는 과학적 분석방법이 아닌 분석관 및 지휘관의 경험에 의한 적 주타격 방향 분석이 주를 이루고 있다. 따라서 본 논문에서는 데이터 마이닝의 대표적 방법인 의사결정트리의 C4.5 알고리즘을 사용하여 북한군의 지휘관 결심지도를 분석하였다. 또한 도출된 분류 규칙을 통해 적 주타격 방향 영향요소를 식별하고 영향요소들 간의 관계 및 정도의 수준을 예측하였다. 분석결과 현재 군에서 사용하고 있는 정보와 유사하고 의미 있는 정보를 도출할 수 있었다.

Design of the student Career prediction program using the decision tree algorithm (의사결정트리 알고리즘을 이용한 학생진로 예측 프로그램의 설계)

  • Kim, Geun-Ho;Jeong, Chong-In;Kim, Chang-Seok;Kang, Shin-Chun;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.332-335
    • /
    • 2018
  • In recent years, artificial intelligence using big data has become a big issue in IT. Various studies are being conducted on services or technologies to effectively handle big data. The educational field, there is big data about students, but it is only a simple process to collect, lookup and store such data. In the future, it makes extensive use of artificial intelligence, machine learning, and statistical analysis to find meaningful rules, patterns, and relationships in the big data of the educational field, and to produce intelligent and useful data for the actual students. Accordingly, this study aims to design a program to predict the career of students using a decision tree algorithm based on the data from the student's classroom observations. Through a career prediction program, it is believed to be helpful to present application paths to students ' counseling and to also provide classroom behavior and direction based on the desired courses.

  • PDF

Generation of Efficient Fuzzy Classification Rules for Intrusion Detection (침입 탐지를 위한 효율적인 퍼지 분류 규칙 생성)

  • Kim, Sung-Eun;Khil, A-Ra;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.519-529
    • /
    • 2007
  • In this paper, we investigate the use of fuzzy rules for efficient intrusion detection. We use evolutionary algorithm to optimize the set of fuzzy rules for intrusion detection by constructing fuzzy decision trees. For efficient execution of evolutionary algorithm we use supervised clustering to generate an initial set of membership functions for fuzzy rules. In our method both performance and complexity of fuzzy rules (or fuzzy decision trees) are taken into account in fitness evaluation. We also use evaluation with data partition, membership degree caching and zero-pruning to reduce time for construction and evaluation of fuzzy decision trees. For performance evaluation, we experimented with our method over the intrusion detection data of KDD'99 Cup, and confirmed that our method outperformed the existing methods. Compared with the KDD'99 Cup winner, the accuracy was increased by 1.54% while the cost was reduced by 20.8%.

A method of searching the optimum performance of a classifier by testing only the significant events (중요한 이벤트만을 검색함으로써 분류기의 최적 성능을 찾는 방법)

  • Kim, Dong-Hui;Lee, Won Don
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1275-1282
    • /
    • 2014
  • Too much information exists in ubiquitous environment, and therefore it is not easy to obtain the appropriately classified information from the available data set. Decision tree algorithm is useful in the field of data mining or machine learning system, as it is fast and deduces good result on the problem of classification. Sometimes, however, a decision tree may have leaf nodes which consist of only a few or noise data. The decisions made by those weak leaves will not be effective and therefore should be excluded in the decision process. This paper proposes a method using a classifier, UChoo, for solving a classification problem, and suggests an effective method of decision process involving only the important leaves and thereby excluding the noisy leaves. The experiment shows that this method is effective and reduces the erroneous decisions and can be applied when only important decisions should be made.

DDoS traffic analysis using decision tree according by feature of traffic flow (트래픽 속성 개수를 고려한 의사 결정 트리 DDoS 기반 분석)

  • Jin, Min-Woo;Youm, Sung-Kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.69-74
    • /
    • 2021
  • Internet access is also increasing as online activities increase due to the influence of Corona 19. However, network attacks are also diversifying by malicious users, and DDoS among the attacks are increasing year by year. These attacks are detected by intrusion detection systems and can be prevented at an early stage. Various data sets are used to verify intrusion detection algorithms, but in this paper, CICIDS2017, the latest traffic, is used. DDoS attack traffic was analyzed using the decision tree. In this paper, we analyzed the traffic by using the decision tree. Through the analysis, a decisive feature was found, and the accuracy of the decisive feature was confirmed by proceeding the decision tree to prove the accuracy of detection. And the contents of false positive and false negative traffic were analyzed. As a result, learning the feature and the two features showed that the accuracy was 98% and 99.8% respectively.

Development of User's Mobile Blog Using Decision Tree Algorithm on Mobile Backgrounds (모바일 환경에서 의사결정트리를 이용한 사용자 모바일 블로그의 개발)

  • Shin, Bongjae;Oh, Jehwan;Lee, Eunseok
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.913-914
    • /
    • 2009
  • 모바일기기의 성능이 점차 발달함에 따라 모바일기기 내에서 로그데이터를 수집한 후 분석하여 사용자의 일상을 요약할 수 있게 되었다. 본 논문에서는 사용자의 GPS 위치정보, 사진 정보들을 모바일기기 내에서 수집하고 사진에 태깅된 사용자의 정보를 바탕으로 의사결정트리 알고리즘을 이용하여 사용자의 하루 일과를 요약한 모바일 사진 블로그를 생성하는 방법을 제안한다. 제안된 시스템으로 모바일기기만 이용하여 사용자의 일상을 효율적으로 요약하여 보여줄 수 있다.

Intelligent Service Reasoning Model Using Data Mining In Smart Home Environments (스마트 홈 환경에서 데이터 마이닝 기법을 이용한 지능형 서비스 추론 모델)

  • Kang, Myung-Seok;Kim, Hag-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12B
    • /
    • pp.767-778
    • /
    • 2007
  • In this paper, we propose a Intelligent Service Reasoning (ISR) model using data mining in smart home environments. Our model creates a service tree used for service reasoning on the basis of C4.5 algorithm, one of decision tree algorithms, and reasons service that will be offered to users through quantitative weight estimation algorithm that uses quantitative characteristic rule and quantitative discriminant rule. The effectiveness in the performance of the developed model is validated through a smart home-network simulation.

Extraction of Blood Velocity Using FCM and Fuzzy Decision Trees in Doppler Ultrasound Images of Brachial Artery (상완동맥 색조 도플러 초음파 영상에서 FCM과 퍼지 의사 결정 트리를 이용한 혈류 속도 추출)

  • Kim, Kwang Baek;Jung, Young Jin;Nam, Youn Man;Lee, Jae Yeol
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.19-22
    • /
    • 2019
  • 상완동맥은 어깨에서부터 팔꿈치까지 내려오는 상완골의 내측부에 존재하며 혈압을 측정할 때 사용되는 혈관이다. 이 혈관은 골절로 인해 찢어지거나, 또는 혈액순환에 문제가 생겨 혈관이 막히는 경우가 발생한다. 이러한 경우 혈관의 상태를 확인하기 위하여 색조 도플러 초음파 검사를 사용하지만, 사용자에 따라 영상을 통한 판단 기준이 다르다는 문제점이 발생한다. 따라서 본 논문에서는 FCM과 Fuzzy Decision Tree를 이용한 영상 처리를 통해 일관성 있는 판단기준을 세우기 위한 혈류의 속도를 제안한다. 색조 도플러 초음파 영상에서의 상완 동맥을 추출하여 기울기를 이용한 FCM 알고리즘을 통해 소속도를 추출한 뒤 퍼지 룰에 적용하여 의사 결정 트리로 등급을 분류하고 결과적으로 혈류 속도를 추출한다. 색조 도플러 초음파 영상에서 환자의 개인 정보를 보호하기 위해 개인 정보 영역을 제거하여 ROI 영역을 추출하고 ROI 영역을 이진화를 통하여 상완동맥이 있는 영역을 추출한다. 이진화 된 ROI 영역에서 혈관 영상의 혈류 방향으로의 무게중심을 설정하고 각각의 픽셀과 무게중심 선과의 거리를 이용하여 소속도를 추출한 후 FCM을 사용하여 최적의 기울기를 선정한다. FCM을 통해 추출한 최종 소속도를 이용하여 퍼지 룰에 적용한 뒤 계산된 T-norm과 소속도의 분산을 이용하여 의사 결정 트리를 형성 트리의 단말 노드들은 각 픽셀을 분류한다. 분류되어진 데이터들의 노드별 소속도 평균을 구한 뒤 디퍼지화를 통해 COG(Center of Gravity)를 계산한다. 마지막으로 그 값을 이용하여 혈류 속도에 영향을 미치는 정도를 계산한 뒤 최종 혈류의 속도를 제안한다.

  • PDF

Effective Diagnostic Method Of Breast Cancer Data Using Decision Tree (Decision Tree를 이용한 효과적인 유방암 진단)

  • Jung, Yong-Gyu;Lee, Seung-Ho;Sung, Ho-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.57-62
    • /
    • 2010
  • Recently, decision tree techniques have been studied in terms of quick searching and extracting of massive data in medical fields. Although many different techniques have been developed such as CART, C4.5 and CHAID which are belong to a pie in Clermont decision tree classification algorithm, those methods can jeopardize remained data by the binary method during procedures. In brief, C4.5 method composes a decision tree by entropy levels. In contrast, CART method does by entropy matrix in categorical or continuous data. Therefore, we compared C4.5 and CART methods which were belong to a same pie using breast cancer data to evaluate their performance respectively. To convince data accuracy, we performed cross-validation of results in this paper.