• Title/Summary/Keyword: 응력 특이

Search Result 135, Processing Time 0.032 seconds

Evaluation Method of Bonded Strength in Adhesively Bonded Structures of the Aluminum Alloys (알루미늄 합금의 접착구조물에 대한 접착강도의 평가방법)

  • 정남용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.35-44
    • /
    • 1999
  • In a view point of earth environmental protection and social requirement, adhesively bonded structures of aluminum alloys have become to be employed for the purpose of decreasing fuel ratio by weight reduction and to improve performance in various engineering fields such as aircrafts, automobiles, rolling stocks and so on. In spite of such wide applications in adhesively bonded structures of aluminum alloys, the quantitative fracture criterion and evolution method of its bonded strength have not been established yet. The objective of this paper is to establish fracture criterion considering stress singularity at interface edges in adhesively bonded structures of aluminum alloys. Through the analyses of boundary element method and static fracture experiments with three different types of specimens in the adhesively bonded joints of aluminum alloys, its fracture criterion was proposed and discussed about strength evolution of adhesively bonded structures.

  • PDF

Analysis of Stress Singularity for the Excess Adhesive of Interface in Adhesively Bonded Joint (접착이음의 계면덧살에 대한 응력특이성 해석)

  • Chung, Nam-Yong;Park, Cheol-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.439-445
    • /
    • 2012
  • The stress singularity for the excess adhesive on interface of adhesively bonded joint was investigated by using the 2-dimensional elastic boundary element method (BEM). To establish a reasonable strength evaluation method and a fracture criterion for the excess adhesive of interface in adhesively bonded joint, it is necessary to evaluate fracture parameters with various bonding conditions. Under the variations of adhesively bonded thickness (h) and diameter (d) for the excess adhesive, a stress analysis was performed, and from the results, the stress singularity index (${\lambda}$) and the stress singularity factor (${\Gamma}$) were calculated. The variations have a great influences on the stress singularity for the excess adhesive of interface in adhesively bonded joint, and the ${\Gamma}$ is reduced as the "h" and "d" increase.

The Influence of Corner Stress Singularities on the Vibration of Rhombic Plates Having Various Edge Conditions (다양한 연단조건을 갖는 마름모꼴형 평판의 진동에 대한 모서리 응력특이도의 영향)

  • Kim, Joo-Woo;Cheong, Myung-Chae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.363-374
    • /
    • 2000
  • An accurate method is presented for vibrations of rhombic plates having three different combinations of clamped, simply supported, and free edge conditions. A specific feature here is that the analysis explicitly considers the moment singularities that occur in the two opposite corners having obtuse angles of the rhombic plates. Stationary conditions of single-field Lagrangian functional are derived using the Ritz method. Convergence studies of frequencies show that the corner functions accelerate the convergence rate of solutions. In this paper, accurate frequencies and normalized contours of the vibratory transverse displacement are presented for highly skewed rhombic plates, so that a significant effect of corner stress singularities nay be understood.

  • PDF

A Shape Function for the Mesh-Free Method Using Singular Weighting Function and Three-Dimensional Applications (특이 가중함수를 사용한 무요소법의 형상함수와 3차원 적용)

  • Nam, Yong-Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.39-50
    • /
    • 1999
  • 특이 가중함수로 표현된 shepard interpolant와 일관조건을 사용하여 무요소법 형성함수를 도출하였다. 따라서 통상의 EFGM(Element Free Galerkin Method)과는 달리 변위로 주어지는 경계조건을 자연스럽게 부과할 수 있다. 수치계산 예로서 외팔보 문제를 다루었는데 보이론과 비교하여 매우 잘 맞는 결과를 보여주고, 유한요소법과의 결합도 자연스럽게 이루어짐을 보인다. 또 penny-shaped 균열을 다루는데, 응력확대계수는 균열 표면의 변위로부처 직접 계산하여 해석해와 비교한다.

  • PDF

On Dual Boundary Integral Equations for Crack Problems (이중 경계적분방정식에 의한 크랙 문제의 해석)

  • ;T.J. Rudolphi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.89-101
    • /
    • 1995
  • 선형 탄성 등방성 물체 내에 있는 일반적인 복합모드 크랙 문제들을 해석하기 위한 이중 경계적분방정식의 일반식과 계산해법이 제시되었다. 크랙면이 포함된 물체 해석에 있어서 유일한 해를 얻기 위하여, 한 면상의 점에는 변위 경계적분방정식이 적용되었고 마주하고 있는 상대면 상의 점에는 인력 경계적분방정식이 적용되었다. 인력 및 변위 경계적분방정식의 강특이해 및 초특이해 적분항들은 수치해법을 적용하기 전에 정상화되었다. 정상화과정 중 보정되는 강특이적분항이 상대 크랙면 상의 특이해 요소를 따라 직접 적분되는 것을 격리시키기 위하여, 특이해 적분 경로를 완만한 곡면으로 우회시킨 가상의 비특이해 보조경계로 대치하여 적분값을 계산하였다. 제시된 해법의 정확성과 효율성을 예시하기 위하여, 2차원 및 3차원 크랙 문제의 변형 후 모습과 응력강도계수 계산 결과를 보였다.

  • PDF

The Free Edge Stress Singularity At An Interface of Bilinear Material Structure (탄성 선형 경화 재료로 구성된 복합 구조물의 자유 경계면에서 나타나는 응력특이도)

  • 정철섭
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.185-193
    • /
    • 1997
  • The order of the stress singularity that occurs at the termination of an interface between materials exhibiting bilinear stress-strain response under plane strain conditions has been calculated, The governing equation of elasticity together with traction-free boundary condition and interface continuity condition defines a two-point boundary value problem. The stress components near the free edge are assumed to be proportional to r/sup s-1/, with solutions existing only for certain values of s. Finding these values entails the solution of an eigenvalue problem. Because it has been impossible to integrate the differential equations analytically, the integration has been performed numerically with a shooting method coupled with a Newton improvement scheme.

  • PDF

Volume Integral Expressions for Numerical Computation of the Dynamic Energy Release Rate (동적(動的)에너지 방출율(放出率)의 수치해석(數値解析)을 위한 체적적분식(體積積分式))

  • Koh, Hyun Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.65-73
    • /
    • 1989
  • Continuum formulations for the expressions of dynamic energy release rates and computational methods for dynamic stress intensity factors are developed for the analysis of dynamic fracture problems subjected to stress wave loading. Explicit volume integral expressions for instantaneous dynamic energy release rates are derived by modeling virtual crack extensions with the dynamic Eulerian-Lagrangian kinematic description. In the finite element applications a finite region around a crack-tip is modeled by using quarter-point singular isoparametric elements, and the volume integrals are evaluated for each crack-tip element during virtual crack extensions while the singularity is maintained. It is shown that the use of the present method is more reliable and accurate for the dynamic fracture analysis than that of other path-independent integral methods when the effects of stress waves are significant.

  • PDF

A Study on the Crack Tip Plastic Region for Stable Crack Growth -304 Stainless Steel- (안정군열성장에 대한 군열선단 소성역에 관한 연구 -304 스테인리스 강-)

  • 황갑운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1183-1192
    • /
    • 1989
  • 본 논문에서는 평면변형률 상태하에서 안정하게 성장하는 균열선단에 집중 되어있는 강소성역의 해석에 역점을 두어 재결정법과 탄.소성유한요소법을 도입하여 안정 성장균열 선단에 형성되는 균열 성장저항에 직접적인 영향을 미치고 있는 소성 역의 크기나 형태에 대한 실험 및 해석을 하였다.

Intrinsic Enrichment of Moving Least Squares Finite Difference Method for Solving Elastic Crack Problems (탄성균열 해석을 위한 이동최소제곱 유한차분법의 내적확장)

  • Yoon, Young-Cheol;Lee, Sang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.457-465
    • /
    • 2009
  • This study presents a moving least squares (MLS) finite difference method for solving elastic crack problems with stress singularity at the crack tip. Near-tip functions are intrinsically employed in the MLS approximation to model near-tip field inducing singularity in stress field. employment of the functions does not lose the merit of the MLS Taylor polynomial approximation which approximates the derivatives of a function without actual differentiating process. In the formulation of crack problem, computational efficiency is considerably improved by taking the strong formulation instead of weak formulation involving time consuming numerical quadrature Difference equations are constructed on the nodes distributed in computational domain. Numerical experiments for crack problems show that the intrinsically enriched MLS finite difference method can sharply capture the singular behavior of near-tip stress and accurately evaluate stress intensity factors.