• Title/Summary/Keyword: 응력영향계수

Search Result 679, Processing Time 0.026 seconds

Reliability Estimation of Steam Turbine Blade Using First Order Reliability Method (FORM을 이용한 증기 터빈블레이드의 신뢰성 평가)

  • 황진호;김철수;김정규
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.199-204
    • /
    • 2002
  • 본 연구에서는 저압 증기 터빈블레이드의 안전성 확보를 위하여 작용응력 및 강도의 변동성을 고려한 확률론적 해석을 수행하였다. 정상상태에서 작용응력은 이론 및 유한요소해석에 의해서 얻을 수 있으며, 최대 von-Mises 응력은 215.4MPa이다. 회전굽힘 하중하에서의 피로한도는 응력비 R= -1에서 계단식 시험법을 이용하여 구하였으며, 이의 확률론적 특성에 가장 적합한 분포는 3 모수 와이블 분포이다. 그리고 신뢰성에 미치는 다양한 인자들의 영향은 영향계수(sensitivity factor)를 이용하여 정량적으로 평가하였다.

  • PDF

유공판의 응력집중계수를 최소로하는 Hole형상의 최적화

  • 임장근;김태완
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.3
    • /
    • pp.295-300
    • /
    • 1985
  • 본 논문에서는 Dhir의 이론에 따라서 Mapping함수로 고차다항식을 사용하여 여러가지 하중상태에 따른 최적형상을 연구하고 Mapping함수에 포함되어 있는 계수가 응력집중 및 형상변화에 미치는 영향을 검토하며 광탄성 실험을 통하여 이론의 타당성 을 입증하고자 하였다.

Evaluation of Chloride Diffusion Coefficients in Cold Joint Concrete Considering Tensile and Compressive Regions (인장 및 압축영역에서 콜드조인트 콘크리트의 염화물 확산계수 평가)

  • Mun, Jin-Man;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.481-488
    • /
    • 2016
  • Concrete member has been subjected to dead and live loads in use, and the induced stress can affect not only structural but also durability behavior. In mass concrete construction, construction joint are required, however cold joint usually occur due to poor surface treatment and delayed concrete placing. The concrete with joint is vulnerable to both shear stress and chloride ingress. This paper presents a quantitative evaluation of cold joint and loading conditions on chloride diffusion behavior. With increasing tensile stress from 30% to 60%, chloride diffusion coefficient gradually increases, which shows no significant difference from result in the sound concrete. However chloride diffusion coefficient under 30% level of compressive stress significantly increases by 1.70 times compared with normal condition. Special attention should be paid for the enlarged diffusion behavior cold joint concrete under compressive stress.

Effect of Compressive Loading on the Chloride Penetration of Concrete Mixed with Granulated Blast Furnace Slag (고로슬래그미분말을 혼입한 콘크리트의 염분침투성에 미치는 압축하중의 영향)

  • Kim, Dong-Hun;Lim, Nam-Gi;Horiguchi, Takashi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.71-78
    • /
    • 2009
  • The analysis of the effect of loading on chloride penetration into concrete is very important. In this study, we confirmed that the chloride penetration rates for plain and BFS concrete were increased by 47% and 89% under compressive stress, respectively. The diffusion coefficient of BFS concrete was lower than for conventional concrete with no BFS, no loads, and under stressed states. Therefore, BFS substitution plays an important role in the repression of chloride penetration even under compressive stress. Under compressive stress,the diffusion coefficient for BFS concrete was higher with increasing stress, and this was also the case for plain concrete. However, BFS concrete was strongly influenced by compressive stress in comparison to plain concrete. We investigated the effect of the difference of specific surfaces on the diffusion coefficient. As a result, the larger specific surface of BFS exhibited a lower diffusion coefficient. This tendency was most pronounced under the high stress conditions.

Crack Extension in Anisotropic Solids Subjected to Uniaxial Load (단축하중을 받는 이방성체내 균열의 진전)

  • 임원균;최승룡;안현수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.161-169
    • /
    • 1999
  • 이방성체의 평면내 직선균열에 대한 균열선단부근의 응력과 변위의 분포는 어떠한 균열체의 형상 및 하중조건에 대해서도 응력확대계수라는 하나의 매개변수로서 나타낼 수 있다고 하는 것이 파괴역학에서 보편화되어 있다. 그러나 많은 경우에 있어서 급수전개식의 이어지는 항은 정량적으로 중요하다. 따라서 본 연구에서는 이러한 항을 유도하고 이것이 균열진전방향에 미치는 영향에 대하여 검초하였다. 이를 위하여 단축하중을 받는 직방성균열체의 해석을 수행하며 재료는 균질이방성체라고 가정하였다. 급수전개식에서 2차항의 영향을 고려하기 위하여 균열선단에서의 응력의 분포를 재해석하였으며, 2차항의 사용은 정확한 균열진전방향의 결정을 위해서 매우 중요함을 보였다. 초기균열진전각도의 결정을 위해서 수직응력비이론을 적용하였다.

  • PDF

Modification of Strain-dependent Hydraulic Conductivity with RMR (RMR에 따른 변형률 의존 수리전도도 변화 해석)

  • 윤용균
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.44-51
    • /
    • 2003
  • Changes of the hydraulic conductivity resulting from the redistribution of stresses by underground excavation are examined using the strain-dependent hydraulic conductivity modification relation, where the modulus reduction ratio and induced strain are the major parameters. The modulus reduction ratio is defined in terms of RMR(Rock Mass Rating) to represent the full gamut of rock mass condition. Though shear dilation has the effect on the modification of hydraulic conductivity, the extent of it depends on RMR When the extensional strain is applied to a fracture, the hydraulic conductivity increases with the decrease of RMR Loading configuration has the effect on the modification of hydraulic conductivity, where the differential stress mode with a magnitude of the minimum principal stress $($\sigma$_x)$ fixed and a magnitude of the maximum principal stress $($\sigma$_y)$ varied is found to exert the greatest effect on the change of hydraulic conductivity.

The Dynamic Effect of Highspeed Trains on Railway Bridges (고속철도 차량의 주행이 교량에 미치는 충격효과)

  • Yu, Chul Soo;Kang, Young Jong;Kim, Jong Heun;Kweon, Jae Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.187-199
    • /
    • 1998
  • The highspeed railway bridge which support continuous and high moving mass evalute the dynamic state and make the displacement of the bridge makes more or less, but up to this time the bridges are designed by the static design concept. for example when we design bridge we use impact factor, which only times the static load makes dynamic load. But becouse it simples. it can't express all of the effects. And so, in this report we study the modeling method of the moving mass and the dynamic factor.

  • PDF

Effect of Duration of Confinement and Its Affecting Factors on the Low-Amplitude Shear Modulus ($G_{max}$) of Soils (토질 최대전단탄성계수($G_{max}$)에 미치는 시간지속효과 및 그 영향요소에 관한 연구)

  • 박덕근
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.135-145
    • /
    • 1999
  • Dynamic Shear modulus (G) is one of the imfortant dynamic soil properties to estimate the response of soil to dynamic loading. Problems in engineering geo1ogy practice the require the knowledge of soil properties subjected to dynamic loadings include soil-structure interaction during earthquakes, bomb blasts, construction operations, and mining. Although the dynamic shear modulus (G) is a time-dependent property, G change with time is often neglected. In this study, the effect of duration of confinement and its affecting factors (previous stress and strain, particle size and sustained pressure, and plasticity index) on the low-amplitude shear modulus ($G_{max}$) of soils are reviewed, and some empirical correlations based on mean particle diameter and plasticity index are proposed.

  • PDF

Dynamic Shear Modulus and Damping Ratio of Soft Clay (연약점토의 동력학적 전단탄성계수 및 감쇠비)

  • 하광현
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.55-66
    • /
    • 1986
  • Considering the effects of confining pressure, initial shear stress, cyclic stress ratio and number of loading cycles, cyclic triaxial tests are carried out to clarify the soil dynamic properties such as shear modulus and value of material damping of clay under undrained cyclic loading conditions. The results show that no obvious dependency on initial shear stress and effective confining stress are recognized in the shear modulus and damping ratio plotted versus strain. However, the shear modulus decreases and the damping ratio increases with increasing axial strain. When compared with others, it is also revealed that the shear moduli are distributed within the range curves obtained using empirical equations derived by Marcuson et al. (3) and Kokusho et al. (4), and damping ratios are distributed between the curves obtained by Kokusho et al. (4) and Ishihara et al. (9).

  • PDF

A Study on the Analysis Parameter Used in Improved EFG Crack Analysis Technique Based on Error Estimate (오차분석을 통한 개선된 EFG 균열해석기법의 해석계수 영향평가)

  • 이상호;윤영철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.703-713
    • /
    • 2002
  • Recently, an improved EFG(Element-Free Galerkin) crack analysis technique, which includes a discontinuous approximation and a singular basis function on the auxiliary supports, was developed. The technique is able to accurately analyze the crack propagation problem without any modification of the analysis model; however, it shows some dependency on the analysis parameters used. In this study, the effect of analysis parameters such as the size of compact support, dilation parameter, the smoothness of shape function around the crack tip, and the number of node using auxiliary supports on the accuracy of solution has been investigated. Through a patch test with a crack, relative L₂ error norm of stresses and the stress intensity factor were computed and compared for various analysis parameters and the results were presented as guidelines for adequate choice of analysis parameters.