Mathematical modeling has been a crucial topic in mathematics education as students' problem solving competency are regarded as a core skill for future society. Despite of the importance of mathematical modeling in school mathematics, there have been very limited studies relating pre-service teachers' knowledge and perceptions on mathematical modeling. In this vein, this study aimed to investigate pe-service mathematics teachers' perceptions on mathematical model, mathematical modeling and educational use of mathematical modeling, and their relationships. The current study utilized a survey consisted of 18 items. The responses of 210 pre-service mathematics teachers to the survey items were quantitatively analyzed using descriptive statistics, analysis of variance, exploratory and confirmatory factor analysis, the structural equation model, and multi group analysis. The results of analysis of variance revealed that pre-service teachers in difference groups (majors, grades, and experiences with mathematical modeling) showed statistically significant differences in mean values. Moreover, according to the results from the structural equation modeling analysis, pre-service mathematics teachers' perceptions on mathematical model and modeling affected their perceptions on educational use of mathematical modeling. In addition, depending on their pre-experiences with mathematical modeling, pre-service teachers represented a different relationship between perceptions on mathematical modeling and educational use of mathematical modeling. Implications for future studies and mathematics classrooms were discussed.
Measurement is an imperative content area of early elementary mathematics, but it is reported that students' understanding of units in measurement situations is insufficient despite its importance. Therefore, this study examined lower-grade elementary students' quantitative reasoning of units in length measurement by identifying the levels of reasoning of units. For this purpose, we collected and analyzed the responses of second-grade elementary school students who engaged in a set of length measurement tasks using an open number line in terms of unitizing, iterating, and partitioning. As a result of the study, we categorized students' quantitative reasoning of unit levels into four levels: Iterating unit one, Iterating a given unit, Relating units, and Transforming units. The most prevalent level was Relating units, which is the level of recognizing relationships between units to measure length. Each level was illustrated with distinct features and examples of unit reasoning. Based on the results of this study, a personalized plan to the level of unit reasoning of students is required, and the need for additional guidance or the use of customized interventions for students with incomplete unit reasoning skills is necessary.
One of the important factors for the effective implementation of artificial intelligence (AI) in mathematics education is the perceptions of the teachers who adopt it. This study surveyed 161 elementary school teachers and 157 secondary mathematics teachers on their perceptions of using AI in mathematics education, grouped into four categories: attitude toward using AI, AI for teaching mathematics, AI for learning mathematics, and AI for assessing mathematics. The findings showed that teachers were most positive about using AI for teaching and learning mathematics, whereas their attitudes towards using AI were less favorable. In addition, elementary school teachers demonstrated a higher positive response rate across all categories compared to secondary mathematics teachers, who exhibited more neutral perceptions. Based on the results, we discussed the pedagogical implications for teachers to effectively use AI in mathematics education.
Problem posing in school mathematics is generally regarded to make a new problem from contexts, information, and experiences relevant to realistic or mathematical situations. Also, it is to reconstruct a similar or more complicated new problem based on an original problem. The former is called as problem generation and the latter is as problem reformulation. The purpose of this study was to explore the co-relation between problem generation and problem reformulation, and the educational effectiveness of each problem posing. For this purpose, on the subject of 33 pre-service secondary school teachers, this study developed two types of problem posing activities. The one was executed as the procedures of [problem generation${\rightarrow}$solving a self-generated problem${\rightarrow}$reformulation of the problem], and the other was done as the procedures of [problem generation${\rightarrow}$solving the most often generated problem${\rightarrow}$reformulation of the problem]. The intent of the former activity was to lead students' maintaining the ability to deal with the problem generation and reformulation for themselves. Furthermore, through the latter one, they were led to have peers' thinking patterns and typical tendency on problem generation and reformulation according to the instructor(the researcher)'s guidance. After these activities, the subject(33 pre-service teachers) was responded in the survey. The information on the survey is consisted of mathematical difficulties and interests, cognitive and affective domains, merits and demerits, and application to the instruction and assessment situations in math class. According to the results of this study, problem generation would be geared to understand mathematical concepts and also problem reformulation would enhance problem solving ability. And it is shown that accomplishing the second activity of problem posing be more efficient than doing the first activity in math class.
The purpose of this study is to analyze the mathematical beliefs of students and teachers by Latent Class Analysis(LCA). This study surveyed 60 teachers about beliefs of 'nature of mathematics', 'mathematic teaching', 'mathematical ability' and also asked 1850 students about beliefs of 'school mathematics', 'mathematic problem solving', 'mathematic learning' and 'mathematical self-concept'. Also, this study classified each student and teacher into a class that are in a similar response, analyzed the belief systems and built a profile of the classes. As a result, teachers were classified into three types of belief classes about 'nature of mathematics' and two types of belief classes about 'teaching mathematics' and 'mathematical ability' respectively. Also, students were classfied into three types of belief classes about 'self concept' and two types of classes about 'School Mathematics', 'Mathematics Problem Solving' and 'Mathematics Learning' respectively. This study classified the mathematics belief systems in which students were categorized into 9 categories and teachers into 7 categories by LCA. The belief categories analyzed through these inductive observations were found to have statistical validity. The latent class analysis(LCA) used in this study is a new way of inductively categorizing the mathematical beliefs of teachers and students. The belief analysis method(LCA) used in this study may be the basis for statistically analyzing the relationship between teachers' and students' beliefs.
Kim, Yujung;Kim, Ji Sun;Park, Sang Eui;Park, Kyoo-Hong;Lee, Jaesung
Communications of Mathematical Education
/
v.27
no.3
/
pp.179-203
/
2013
The purpose of this study was to discuss the example that developed geometry model textbook based on storytelling using real-life context. To achieve this purpose, we first elaborated the meaning of the textbook based on storytelling with real-life context, and then we discussed the outline of the story and the summary of each lesson. This study defined the storytelling textbook with real-life context as the textbook consisting of activities that explored and organized mathematical concepts by using real-life situations as materials of stories. The geometry textbook we developed employed two real-life materials, a map and a set square: we used a map for the coordinate geometry and a set square for the equation of a line. To attract students' interest, we introduced confrontation between a teacher and two students and a villain. We implemented experimentation with the textbook based on storytelling in order to verify its validity. The participants were 25 students that were enrolled in a high school in Seoul. Among them, 17 participants were surveyed. Students' answers from the survey questionnaire suggested that the geometry textbook we developed based on storytelling helped them learn mathematics and that the instruments such as a map and a set square helped them understand mathematical concepts. However, their opinion implied that the story of the textbook needed to be improved so that the story reflected more realistic contexts that were familiar with students.
The purpose of this study is to set appropriate targets for school-year levels and types of mathematical communication. First, I classify mathematical communication into four types as Discourse, Representation, Operation and Complex and refer to them collectively as the 'D.R.O.C pattern'. I have listed achievement factors based on the D.R.O.C pattern hearing opinions from specialists to set a target, then set a final target after a 2nd survey with specialists and teachers. I have set targets for mathematical communication in elementary schools suitable to its status and students' levels in our country. In NCTM(2000), standards of communication were presented only from kindergarten to 12th grade students, and, for four separate grade bands(prekindergarten through grade 2, grades 3-5, grades 6-8, grades 9-12), they presented characteristics of the same age group through analysis of classes where communication was active and the stated roles of teachers were suitable to the characteristics of each school year. In this study, in order to make the findings accessible to teachers in the field, I have classified types into Discourse, Representation, Operation and Complex (D.R.O.C Pattern) according to method of delivery, and presented achievement factors in detail for low, middle and high grades within each type. Though it may be premature to set firm targets and achievement factors for each school year group, we hope to raise the possibility of applying them in the field by presenting targets and achievement factors in detail for mathematical communication.
Park, Gwi-Hee;Yoon, Hyun-Kyoung;Cho, Ji-Young;Jung, Jae-Hoon;Kwon, Oh-Nam
Communications of Mathematical Education
/
v.24
no.2
/
pp.325-344
/
2010
The purpose of this study is to investigate what influences students' preferences on empirical and deductive proofs and find their relations. Although empirical and deductive proofs have been seen as a significant aspect of school mathematics, literatures have indicated that students tend to have a preference for empirical proof when they are convinced a mathematical statement. Several studies highlighted students'views about empirical and deductive proof. However, there are few attempts to find the relations of their views about these two proofs. The study was conducted to 47 students in 7~9 grades in the transition from empirical proof to deductive proof according to their mathematics curriculum. The data was collected on the written questionnaire asking students to choose one between empirical and deductive proofs in verifying that the sum of angles in any triangles is $180^{\circ}$. Further, they were asked to provide explanations for their preferences. Students' responses were coded and these codes were categorized to find the relations. As a result, students' responses could be categorized by 3 factors; accuracy of measurement, representative of triangles, and mathematics principles. First, the preferences on empirical proof were derived from considering the measurement as an accurate method, while conceiving the possibility of errors in measurement derived the preferences on deductive proof. Second, a number of students thought that verifying the statement for three different types of triangles -acute, right, obtuse triangles - in empirical proof was enough to convince the statement, while other students regarded these different types of triangles merely as partial examples of triangles and so they preferred deductive proof. Finally, students preferring empirical proof thought that using mathematical principles such as the properties of alternate or corresponding angles made proof more difficult to understand. Students preferring deductive proof, on the other hand, explained roles of these mathematical principles as verification, explanation, and application to other problems. The results indicated that students' preferences were due to their different perceptions of these common factors.
It is necessary for the teacher to understand why teach mathematics in order to implement the visions and expectations of the national mathematics curriculum in her actual classroom. This study conducted a survey of examining how elementary school teachers might understand the purpose of teaching mathematics. The results of this study showed that teachers' conceptions of the purpose of teaching mathematics were related mainly to the development of logical thinking, practical use of mathematics in everyday life, and a tool for studying other subjects or disciplines. However, teachers did not perceive much other purposes of mathematics education such as understanding the world, appreciating aesthetic value of mathematics, and developing communicative ability as well as sociality. Whereas teachers did not think of the significance of mathematics as an intellectual field when asked to write down how they would explain students why they had to learn mathematics, they tended to strongly agree it in the Likert-scale responses. Teachers' conceptions were not different according to their gender but teachers with less than five years' teaching experience were relatively negative than others with more experience. Given these results, this study provided issues and implications of teachers' conceptions of the purpose of teaching mathematics.
This cross-national study examines the similarities and differences between Korean and U.S. pre-service teachers' views on equitable mathematics teaching. Pre-service teachers enrolled in mathematics education courses at the two sites (Korea, n=51; U.S., n=33) were administered a survey consisting of the following: (a) items about pre-service teachers' views on equity relative to mathematical ability, classroom policies and practices, and access to learning opportunities, (b) items about pre-service teachers' agreement in their views on recommended practices, and (c) items about participants' past learning experiences in an equitable learning environment as students. Similarities were found between the sites regarding the following: (a) advocating for equitable mathematics teaching, and (b) conceptualizing equitable teaching as a way to support the learning of less capable students. Differences were found with regard to nurturing growth mindsets in mathematics; positioning toward equal opportunities and outcomes in learning; and relating to grouping as collaborative learning strategies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.