• Title/Summary/Keyword: 응고 균열

Search Result 39, Processing Time 0.03 seconds

Solidification Cracking in Welds and its Control (용접부 응고균열 발생 및 제어)

  • Yoon, Jong-Won
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.22-22
    • /
    • 2010
  • Eutectic composition phase with low melting point which solidifies at the final stage affects the solidification cracking at the intercellular or interdendritic area of welds and castings. If sufficient amount of eutectic composition liquid does not exist between the solidifying phases, the discontinuities remain as cracks. However, abundant amount of liquid eutectic composition existing in the final stage can flow into the discontinuities easily and heal the cracks. By flowing of liquid eutectic and healing of discontinuities, the possibility of cracking can be reduced when the amount of eutectic liquid is sufficient. For the solidification of pure metals, liquid eutectic does not exist and the interlocking of growing solid phases can be realized without interruption of liquid film. Therefore there is little possibility of solidification cracking in the case of welds and castings of pure metal. In a practical sense, the effective way to reduce or prevent the solidification cracking is making the composition of molten pool or melts near to the eutectic composition.

  • PDF

Cracking in Welds and Its Prevention(II) - Cracks in Welds and Hot Cracking(I) - (용접부의 균열 및 그 방지(II) - 균열의 종류 및 고온균열(I)-)

  • 박화순
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.1-3
    • /
    • 2002
  • 전 호에서는 용접부와 밀접한 관계가 있는 가스의 성질 및 가스가 용접부에 미치는 영향에 대하여 서술하였다. 본 호에서는 용접부의 균열 및 그 방지에 대하여, 먼저 용접 부에서 발생하는 균열의 종류와 고온균열 중의 일부를 소개하기로 한다 고온균열은 응고균열, 연성저하균열, 액화균열로 크게 나눌 수 있으며, 총 3회에 나누어 서술한다.

Effect of Cu content on Hot Tearing Susceptibility in Al-Si-Cu Aluminum Casting Alloy (Al-Si-Cu 알루미늄 주조 합금의 열간 균열 민감성에 미치는 Cu 함량의 영향)

  • Oh, Seung-Hwan;Munkhdelger, Chinbat;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.419-433
    • /
    • 2021
  • Al-Si-Cu alloys benefit from the addition of copper for better hardness and strength through precipitation hardening, which results in remarkably strong alloys. However, the addition of copper expands the solidification range of Al-Si-Cu alloys, and due to this, these alloys become more prone to hot tearing, which is one of the most common and serious fracture phenomena encountered during solidification. The conventional evaluation method of the hot tearing properties of an alloy is a relative and qualitative analysis approach that does not provide quantitative data about this phenomenon. In the present study, the mold itself part of a device developed in Instone et al. was partially modified to obtain more reliable quantitative data pertaining to the hot tearing properties of an Al-Si-Cu casting alloy. To assess the influence of Cu element, four levels of Cu contents were tested (0.5, 1.0, 3.0, and 5.0 wt.%) in the Al-Si-Cu system alloy and the hot tearing properties were evaluated in each case. As the Cu content was increased, the hot tearing strength decreased to 2.26, 1.53, 1.18, and 1.04 MPa, respectively. At the moment hot tearing occurred, the corresponding solid fraction and solidification rate decreased at the same temperature due to the increase in the solid-liquid coexistence range as the Cu content increased. The morphology of the fracture surfaces was changed from dendrites to dendrites covered with residual liquid, and CuAl2 phases were observed in the vicinity of hot tearing.

Weld Cracking of High Strength Al-Zn-Mg Alloy Weldment (용접구조용 7000 계열 고장력 Al-Zn-Mg 합금의 용접특성과 용접균열에 관한 고찰)

  • 김환태;황선효;남수우
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.28-37
    • /
    • 1994
  • 본 소고에서는 Al-Zn-Mg 계통의 고강도 알루미늄합금의 제조과정에서 실시하는 열처리 공정을 통해 얻어지는 시효경화 효과, 합금원소 첨가에 따른 석출물의 생성과 이에 따른 석출경화 효과와 용착금속의 응고균열 발생과의 상호관계를 조사하고 용접열영향부의 용질원자 확산과 입계의 liquid film에 의한 액화(liquation) 균열의 생성을 분석하여 설명하고자 한다.

  • PDF

( Control of Primary Solidification Mode for Improving Solidification Cracking Resistance , Corrosion Resistance and Cryogenic Toughness of Austenitic Stainless Steel (오스테나이트계 스테인리스강의 응고균열저항 내식성 및 극저온 초성 향상을 위한 초정응고 형식의 제어)

  • 정호신
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.208-215
    • /
    • 1992
  • Concept of primary solidification mode control was adopted to obtain optimal solidification crack resistance, hot ductility, corrosion resistance and toughness for austenitic stainless steel. By controlling primary solidification phase as primary $\delta$ and containing no ferrite at room temperature, optimal solidification crack resistance, hot ductility, corrosion resistance and cryogenic toughness could be obtained. The optimum chemical composition of austenitic stainless steel ranges 1.46~1.55(Creq/Nieq ratio) calculated by Schaeffler's equation.

  • PDF

A Study on the Cracking Behavior in the Welds of Ni-Cr-Fe and Ni-Fe-Cr-Mo Alloys Part I : Solidification Cracking in the Fusion Zone (Ni-Cr-Fe 및 Ni-Fe-Cr-Mo계 합금의 용접부 균열특성에 관한 연구 Part I : 용착금속의 응고균열)

  • 김희봉;이창희
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.78-89
    • /
    • 1997
  • This study has evaluated the weld metal solidification cracking behavior of several Ni base superalloys (Incoloy 825, Inconel 718 and Inconel 600). Austenitic stainless steels(304, 310S) were also included for comparison. In addition, a possible mechanism of solidification cracking in the fusion zone was suggested based on the extensive microstructural examinations with SEM, EDAX, TEM, SADP and AEM. The solidification cracking resistance of Ni base superalloys was found to be far inferior to that of austenitic stainless steels. The solidification cracking of Incoloy 825 and Inconel 718 was believel to be closely related with the Laves-austenite (Ti rich in 825 and Nb rich in 718) and MC-austenite eutectic phases formed along the grain boundaries during solidification. Cracking in Inconel 600 was always found along the grain boundaries which were enriched with Ti and P. Further, solidifidcation cracking resistance was dependent not only upon the type of love melting phases but also on the amount of the phases along the solidification grain boundaries.

  • PDF

전자빔 용접된 고장력 알루미늄 합금 용접부의 고온균열 발생 및 특성에 관한 연구

  • 김성욱;김경민;윤의박;이창희
    • Laser Solutions
    • /
    • v.4 no.1
    • /
    • pp.39-48
    • /
    • 2001
  • This study was performed to evaluate basic characteristics of electron beam weldability for high strength aluminum alloys. The aluminum alloys used were A5083 and A6N01, and A7N01. The principal welding process parameters, such as accelerating voltage, beam current, welding speed and chamber pressure were investigated. The dimension and microstructure of welds were evaluated with OLM, and SEM (EDAX). In addition, weldability variation(cracking) due to process parameters was also evaluated. The degree of cracking in the EB fusion zone appears to be affected mainly by aspect ratio, such that as aspect ratio increases the cracking tendency also increases. The alloying element itself may also affect the hot cracking resistance, but its role is considered to be indirect effect such that the relatively higher vaporization pressure elements of Zn and Mg give deeper weld penetration and thus results in greater cracking tendency.

  • PDF