DOI QR코드

DOI QR Code

Effect of Cu content on Hot Tearing Susceptibility in Al-Si-Cu Aluminum Casting Alloy

Al-Si-Cu 알루미늄 주조 합금의 열간 균열 민감성에 미치는 Cu 함량의 영향

  • Oh, Seung-Hwan (Department of Research and Technology, Dr Axion Company) ;
  • Munkhdelger, Chinbat (Department of Metallurgical Eng., Pukyong National Graduate School) ;
  • Kim, Heon-Joo (Department of Metallurgical Eng., Pukyong National University)
  • Received : 2021.05.25
  • Accepted : 2021.08.03
  • Published : 2021.10.30

Abstract

Al-Si-Cu alloys benefit from the addition of copper for better hardness and strength through precipitation hardening, which results in remarkably strong alloys. However, the addition of copper expands the solidification range of Al-Si-Cu alloys, and due to this, these alloys become more prone to hot tearing, which is one of the most common and serious fracture phenomena encountered during solidification. The conventional evaluation method of the hot tearing properties of an alloy is a relative and qualitative analysis approach that does not provide quantitative data about this phenomenon. In the present study, the mold itself part of a device developed in Instone et al. was partially modified to obtain more reliable quantitative data pertaining to the hot tearing properties of an Al-Si-Cu casting alloy. To assess the influence of Cu element, four levels of Cu contents were tested (0.5, 1.0, 3.0, and 5.0 wt.%) in the Al-Si-Cu system alloy and the hot tearing properties were evaluated in each case. As the Cu content was increased, the hot tearing strength decreased to 2.26, 1.53, 1.18, and 1.04 MPa, respectively. At the moment hot tearing occurred, the corresponding solid fraction and solidification rate decreased at the same temperature due to the increase in the solid-liquid coexistence range as the Cu content increased. The morphology of the fracture surfaces was changed from dendrites to dendrites covered with residual liquid, and CuAl2 phases were observed in the vicinity of hot tearing.

Al-Si-Cu 합금은 구리 첨가에 따른 석출경화로 경도와 강도가 현저하게 강한 합금을 생성하는 장점이 있습니다. 그러나 구리를 첨가하면 Al-Si-Cu 합금의 응고 범위가 확장되고 합금은 응고 중에 발생하는 가장 흔하고 심각한 파단 현상 중 하나 열간 균열이 발생하기 쉽습니다. 합금의 열간 균열 특성에 대한 기존의 평가 방법은 이 특성에 대한 정량적 데이터를 제공하지 않는 상대적이고 정성적인 분석 방법입니다. 이 연구에서 Al-Si-Cu 주조 합금의 열간 균열 특성에 대한 더 신뢰할 수있는 정량 데이터를 얻기 위해 Instone et. al 이 개발 한 장치를 부분적으로 수정되었습니다. Cu 원소의 영향을 평가하기 위해 Al-Si-Cu 계 합금에서 4 가지 수준의 Cu 함량을 (0.5, 1.0, 3.0, 5.0) wt. %로 설정하고 각 합금에 대해 열간 균열 특성을 평가했습니다. Cu 함량이 증가함에 따라 열간 균열 강도는 (2.26, 1.53, 1.18, 1.04) MPa)로 감소했습니다. 열간 균열이 발생하는 시점, Cu 함량이 증가함에 따라 고액 공존 범위가 증가하여 동일 온도에서 해당 고상율 및 응고 속도가 감소하였다. 파단면의 형태는 수상 돌기에서 잔류 액상으로 덮인 수상 돌기로 바뀌었고, 열간 균열 발생 인근에서 CuAl2 상이 관찰되었다.

Keywords

References

  1. Mohamed, S. S., Samuel, A. M. Doty, H. W. and et al., Inter. J. Metalcast, 14(1) (2020) 25. https://doi.org/10.1007/s40962-019-00342-z
  2. J.G. Kaufman and E.L. Rooy, "Aluminum Alloy Castings", ASM International, OH (2004).
  3. L. Dobrzanski, R. Maniara, M. Krupinski, and J. Sokolowski, J. Achives Mater. Manuf. Eng., 24 (2007) 51.
  4. G. Mrowka-Nowotnik, J. Sieniawski and M. Wierzbinska, Archives Mater. Sci. Eng., 28(2) (2007) 69.
  5. C. Caceres, M. Djurdjevic, T. Stockwell and J. Sokolowski, Scr. Mater., 42(5) (1999) 631.
  6. Li, S. and Apelian D., Inter. J. Metalcast, 5(1) (2011) 23. https://doi.org/10.1007/bf03355505
  7. Li, S., Apelian, D. and Sadayappan, K. Inter. J. Metalcast, 6(1) (2012) 51.
  8. Fiorese, E., Bonollo, F., Timelli, G. and et al., Inter. J. Metalcast, 9(1) (2015) 55. https://doi.org/10.1007/bf03355602
  9. B. K. Kang and I. Sohn, Metall. Mater. Trans., 49 (2018) 5137. https://doi.org/10.1007/s11661-018-4786-x
  10. D. Cheng, L. Zhang, G. Wu, J. Mao and W. Liu, J. Mater. Res., 31(22) (2016) 1. https://doi.org/10.1557/jmr.2016.3
  11. Chen, Y., Liu, Z., Liu, S. and et al., Inter. J. Metalcast, 15(1) (2021) 130. https://doi.org/10.1007/s40962-020-00438-x
  12. Y. Li, Z. R. Zhang, Z. Y. Zhao, H. X. Li, L. Katgerman and J. S. Zhang, Metall. Mater. Trans. A, 50(8) (2019) 3603. https://doi.org/10.1007/s11661-019-05268-z
  13. A. B. Phillion, S. L. Cockcroft, and P. D. Lee, Modelling Simul. Mater. Sci. Eng., 17(5) (2009).
  14. Clyne, T. W. and Davies, G. J., Proceedings of the Conference on Solidification and Casting of metals, Metals Society, London (1979) 274.
  15. Eskin, D.G., Suyitno and Katgerman, L., Prog. Mater. Sci., 49(5) (2004) 629. https://doi.org/10.1016/S0079-6425(03)00037-9
  16. Viano, D., St. John, D., Grandfield, J. and Caceres, C., Light Met., (2005) 895.
  17. Davidson, C., Viano, D., Lu, L. St. John, D., Int. J. Cast Met. Res., 19 (2006) 59. https://doi.org/10.1179/136404606225023291
  18. S. Instone, D. StJohn, and J. Grandfield, Int. J. Cast. Met. Res., 12(6) (2000) 441. https://doi.org/10.1080/13640461.2000.11819381
  19. H.J. Kim, J. Korea Foundry Society, 34(4) (2014) 136. https://doi.org/10.7777/JKFS.2014.34.4.136
  20. Nasresfahani, M.R. and Niroumand, B., Inter. J. Metalcast, 14(2) (2020) 538.. https://doi.org/10.1007/s40962-019-00378-1
  21. Uludag, M., Cetin, R., Dispinar, D and et al., Inter. J. Metalcast, 12(3) (2018) 589. https://doi.org/10.1007/s40962-017-0197-9
  22. L. Backerud, G. Chai and J. Tamminen, "Foundry alloys - Vol.2", Skanaluminium, Norway (1990).
  23. B. Akyuz, Advances in Science and Technology, 10(31) (2017) 51.
  24. A. Meetsma, J.L. De Boer and S. Van Smaalen., J. Sol. State Chem., 83(2) (1989) 370. https://doi.org/10.1016/0022-4596(89)90188-6
  25. M. Djurdjevic, W. Kasprzak, C. Kierkus, W. Kierkus and J. Sokolowski, AFS Trans., 16, (2001), 1.
  26. M. Moustafa, F. Samuel, H. Doty and S. Valtierra, Inter. J. Cast. Metal. Res., 14(4) (2002) 235. https://doi.org/10.1080/13640461.2002.11819442
  27. M.B. Djurdjevic, J. Sokolowski, W.T. Kierkus, and G.E. Byczynski, Mater. Sci. Forum Trans. Tech. Publ., 539-543 (2007) 299. https://doi.org/10.4028/www.scientific.net/MSF.539-543.299
  28. Mehta, M. C., Mandal, D. & Chaudhury, S. K., Inter. J. Metalcast, 14(4) (2020) 987. https://doi.org/10.1007/s40962-020-00408-3
  29. Zeng, X., Ferguson, C., Sadayappan, K and et al., Inter. J. Metalcast, 12(3) (2018) 457. https://doi.org/10.1007/s40962-018-0227-2
  30. N. L. Veldman, A.K. Dahle, D.H. StJohn and L. Arnberg, Metall. and Mater. Trans. A, 32(1) (2001) 147. https://doi.org/10.1007/s11661-001-0110-1
  31. J. Williams, and A. Singer, J. Inst. Metal., 96 (1968) 5.
  32. E. H. Lee, and P.S. Symonds, Plasticity; proceedings of the second symposium on naval structural mechanics, elsevier, amsterdam (2013).
  33. E. O. Orowan, Fundamentals of brittle behavior of Metals, Murray WM. (1950).
  34. D. Liu, H.V. Atkinson and H. Jones, Acta Mater., 53(14) (2005) 3807. https://doi.org/10.1016/j.actamat.2005.04.028
  35. M.A.M. Arif, M.Z. Omar, Z. Sajuri, and M.S. Salleh, Trans. Non. Ferr. Metal. Soc. China, 30(2) (2020) 275. https://doi.org/10.1016/S1003-6326(20)65212-8
  36. M.S. Salleh, M.Z. Omar, J. Syarif, K.S. Alhawari, and M.N. Mohammed, Appl. Mech. and Mater., 548 (2014) 237. https://doi.org/10.4028/www.scientific.net/AMM.548-549.237
  37. J. Campbell, "Castings 2nd ed.", Butterworth-Heinemann Ltd., oxford (2003).
  38. Flemings, M.C., Solidification Processing. Metallurgical Transactions, 5 (1974) 2121-2134. https://doi.org/10.1007/BF02643923
  39. A. B. Phillion, S. L. Cockcroft and P. D. Lee, Modelling Simul. Mater. Sci. Eng., 17(5) (2009).
  40. Clyne, T.W. and G.J. Davies, Solidification and casting of metals. Proc. Conf. on Solidifiation and Casting Metals, (1979) 275.
  41. Pellini, W., Foundry, 80 (1952) 125.
  42. Dodd, R., Foundry Trade Journal, 101 (1956) 1.
  43. S. A. Metz, and M.C. Flemings, "Fundamental Study of Hot Tearing", American Foundrymen's Society, IL (1970).
  44. N. Tenekedjiev, H. Mulazimoglu, B. Closset and J. Gruzleski, American Foundrymen's Society, IL (1995) 32.