Hyun-Su Yu;Seo-Yeon Nam;Joo-Yeong Baek;So-Yeong Ahn;Se-Jin Hwang;Gyu-Young Lee
Annual Conference of KIPS
/
2023.11a
/
pp.1092-1093
/
2023
본 논문에서는 한국무역협회(KITA)의 오픈상담 자료들을 바탕으로, 딥러닝 기술을 이용하여 구현한 해상물류 대화형 챗봇 ShipMate를 제안한다. 챗봇 ShipMate는 KoGPT2를 활용한 답변과 Doc2Vec 기반의 유사 상담사례 추천이 가능하고, 무역상담을 시간제약 없이 진행할 수 있기 때문에, 기존 해상물류 서비스의 접근성을 한층 더 높일 수 있으며 이를 실험을 통해 입증하였다.
Journal of the Korea Society of Computer and Information
/
v.26
no.10
/
pp.179-184
/
2021
In this paper, we propose the deep learning-based neural network model to predict bunker price. In the shipping industry, since fuel oil accounts for the largest portion of ship operation costs and its price is highly volatile, so companies can secure market competitiveness by making fuel oil purchasing decisions based on rational and scientific method. In this paper, short-term predictive analysis of HSFO 380CST in Singapore is conducted by using three recurrent neural network models like RNN, LSTM, and GRU. As a result, first, the forecasting performance of RNN models is better than LSTM and GRUs using long-term memory, and thus the predictive contribution of long-term information is low. Second, since the predictive performance of recurrent neural network models is superior to the previous studies using econometric models, it is confirmed that the recurrent neural network models should consider nonlinear properties of bunker price. The result of this paper will be helpful to improve the decision quality of bunker purchasing.
Rapid advancement information and communication technologies has introduced various dimension of e-Learning environment such as u-learning(ubiquitous learning), m-learning(mobile learning) and t-learning(television learning). These technologies enabled learners to access learning contents through variety of devices with more flexibility and consistency. In order to implement learning through these multiple environments, basically it is necessary to acquire and process the platform information that contains properties and status of the web-accessing devices. In this study, we introduce the design and implementation of a Platform Analyzer Model which is essential for learning systems that support multi-platform environment. We also present a Interactive DTV-Centered multi-platform learning environment framework using PC, PDA or Mobile phone. Finally, we will discuss the possibility of the multi-platform learning environment with sample scenario and contents.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.78-78
/
2021
영상유속분석법은 비접촉식으로 유속을 측정하는 방법으로 특히 홍수시 하천의 표면유속을 안전하게 계측할 수 있어서 경제적이고 안전한 하천유속 측정 방법 중 하나이다. STIV는 영상의 휘도 정보를 시간 방향으로 나열하여 작성된 STI(Space-Time Image)에 나타나는 패턴의 기울기를 이용하여 유속을 산정하는 방법이다. 특히 STIV(Space-Time Image Velocimetry)는 기존 입자군의 상호상관법에 기초한 입자영상유속계와 달리 표식자의 유무와 상관없이 유속을 측정할 수 있어 적용성과 안정성이 확보된다. 하지만 영상의 상태가 불량한 경우 정확한 유속 측정이 난해하며 야간에는 별도의 조명 추가 및 태풍과 같은 악기상에서는 빗방울이 카메라에 맺히거나 수면의 진동, 구조물의 진동에 의한 영상의 상태가 불량하게 되어 측정 정도가 떨어진다. 이처럼 영상을 이용한 유속 계측에 있어 다양한 연구 및 기술개발이 요구되는 시점이다. 따라서 본 연구에서는 영상을 이용한 정확한 유속측정을 위해 STIV와 인공지능을 융합하여 정확한 유속 평가를 목적으로 한다. 우선 기존 STI에 의한 기울기 추정방법을 확장하여 딥러닝(CNN)에 의한 기울기 추정방법을 도입하였다. CNN은 일반적으로 이미지의 특성을 추출하는데 유용한 방법으로서 STI의 2차원 Fourier변환 이미지를 사용하여 패턴의 기울기를 감지하도록 학습하였고 적용 결과 기울기에 대한 인식율은 매우 양호하였으며 이를 이용한 실제 관측 영상에 적용한 결과 유속에 대한 정밀도도 매우 양호하게 나타났다. 또한 딥러닝을 적용한 STIV는 노이즈(진동, 화면 불량 등)가 있는 영상에서도 안정적으로 유속을 산정할 수 있으며 전파유속계를 이용한 실제 하천의 표면유속 관측치와 비교 검토 결과 매우 양호하게 유속을 평가하고 있는 것으로 나타났다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.307-309
/
2023
본 논문에서는 LSTM Autoencoder를 활용한 전동기의 Anomaly Detection을 제안한다. 전동기의 Anomaly Detection를 통해 전동킥보드의 고장을 예방하여 이용자의 안전을 보장한다. 전동기로부터 얻은 시계열 진동 데이터와 시계열 데이터 분석에 유의미한 LSTM을 활용한 Autoencoder를 통해 Anomaly Detection을 구현했다. 그 결과 99.9%의 정확도를 기록하였다.
Kim, Na-Gyeong;Kim, Jeong-Min;Lee, Hye-Won;Kook, Joong-Jin
Annual Conference of KIPS
/
2021.11a
/
pp.775-778
/
2021
악성 댓글은 언어폭력이며 사이버 범죄의 일종으로 인터넷상에서 상대방이 올린 글에 비방이나 험담을 하는 악의적인 댓글을 말한다. 악성 댓글을 단순히 차단하는 다른 프로그램들과는 달리 해당 영상의 악성 댓글의 비율을 알려주고 악플러들의 닉네임과 그 빈도를 나타내주는 것으로 차별화를 두었다. 따라서 많은 유튜버들이 겪는 악성 댓글 문제들을 탐지하여 유튜브에 달리는 악성 댓글들을 탐지하고 시각화하여 제공한다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.473-474
/
2023
본 논문에서는 딥러닝 기법 중 하나인 순환신경망(RNN)을 활용하여 자연어를 처리할 수 있는 모델 개발에 대하여 연구를 진행하였다. 다양한 주제에 대한 사용자들의 의견을 확보할 수 있는 유튜브 플랫픔을 활용하여 데이터를 확보하였으며, 감성 분류를 진행하는 만큼 학습 데이터셋으로는 네이버 영화 리뷰 데이터셋을 활용하였다. 사용자는 직접 데이터 파일을 삽입하거나 혹은 유튜브 댓글과 같이 데이터를 외부에서 확보하여 감성을 분석할 수 있으며, 자연어 속 등장하는 단어의 빈도수를 종합하여 해당 데이터들 속 키워드는 무엇인지를 분석할 수 있도록 하였다. 나아가 종합 데이터 분석 관리 플랫폼을 제작하기 위하여 해당 데이터를 데이터베이스에 저장하고GUI 프로그램을 통하여 접근 및 관리가 가능하도록 하였다.
Journal of the Korea Society of Computer and Information
/
v.27
no.5
/
pp.37-45
/
2022
As of 2020, about 500 hours of videos are uploaded to YouTube, a representative online video platform, per minute. As the number of users acquiring information through various uploaded videos is increasing, online video platforms are making efforts to provide better recommendation services. The currently used recommendation service recommends videos to users based on the user's viewing history, which is not a good way to recommend videos that deal with specific purposes and interests, such as educational videos. The recent recommendation system utilizes not only the user's viewing history but also the content features of the item. In this paper, we extract the content features of educational video for educational video recommendation based on YouTube, design a recommendation system using it, and implement it as a web application. By examining the satisfaction of users, recommendataion performance and convenience performance are shown as 85.36% and 87.80%.
Ha, Seung Yun;Kim, Hee Jun;Kwak, Gyeong Il;Kim, Young-Taeg;Yoon, Han-Sam
Journal of Korean Society of Coastal and Ocean Engineers
/
v.34
no.3
/
pp.72-81
/
2022
Positions of five drifting buoys deployed on August 2020 near southwestern area of Jeju Island and numerically predicted velocities were used to develop five Artificial Intelligence-based models (AI models) for the prediction of particle tracks. Five AI models consisted of three machine learning models (Extra Trees, LightGBM, and Support Vector Machine) and two deep learning models (DNN and RBFN). To evaluate the prediction accuracy for six models, the predicted positions from five AI models and one numerical model were compared with the observed positions from five drifting buoys. Three skills (MAE, RMSE, and NCLS) for the five buoys and their averaged values were calculated. DNN model showed the best prediction accuracy in MAE, RMSE, and NCLS.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.