1 |
Lulu, L., & Elnagar, A. Automatic Arabic dialect classification using deep learning models. Procedia computer science, 2018, 142, 262-269.
DOI
|
2 |
Deldjoo, Y., Constantin, M. G., Eghbal-Zadeh, H., Ionescu, B., Schedl, M., & Cremonesi, P. Audio-visual encoding of multimedia content for enhancing movie recommendations. In Proceedings of the 12th ACM Conference on Recommender Systems, 2018, September, pp. 455-459.
|
3 |
Kang, Jae Shin, Kang, Tae Yim. Analysis of Content Components that Influence Learning Participation in Online Lectures for Multimedia Practice Subjects. Journal of the Korean Society of Design Culture, 2020, 26(4), 19-32.
DOI
|
4 |
Chandrasekaran, D., & Mago, V. Evolution of semantic similarity -a survey. ACM Computing Surveys (CSUR), 2021, 54(2), 1-37.
DOI
|
5 |
Sweta, S., Babu, J. M., Palempati, A., & Kanhe, A. Cepstral Coefficient-Based Gender Classification Using Audio Signals. In Sustainable Advanced Computing, 2022. Springer, Singapore. pp. 81-90.
|
6 |
Grzybowska, J., & Kacprzak, S. Speaker Age Classification and Regression Using i-Vectors. In INTERSPEECH. 2016, September, pp. 1402-1406.
|
7 |
Banronbodo.com, '1 minute on the Internet... 500 hours of YouTube uploaded', http://www.banronbodo.com/news/articleView.html?idxno=10153
|
8 |
Nasmedia, 'Internet user survey NPR 2021', https://www.nasmedia.co.kr/NPR/2021/
|
9 |
AI Hub, Korean Conversation Voice, https://aihub.or.kr/aidata/7968.
|
10 |
Reddy, S. R. S., Nalluri, S., Kunisetti, S., Ashok, S., & Venkatesh, B. Content-based movie recommendation system using genre correlation. In Smart Intelligent Computing and Applications, 2019. Springer, Singapore, pp. 391-397.
|
11 |
Deldjoo, Y., Schedl, M., Hidasi, B., & Knees, P. Multimedia recommender systems. In Proceedings of the 12th ACM Conference on Recommender Systems 2018, September, pp. 537-538.
|
12 |
Javed, U., Shaukat, K., Hameed, I. A., Iqbal, F., Alam, T. M., & Luo, S. A review of content-based and context-based recommendation systems. International Journal of Emerging Technologies in Learning (iJET), 2021, 16(3), 274-306.
DOI
|
13 |
Deldjoo, Y., Schedl, M., Cremonesi, P., & Pasi, G. Recommender systems leveraging multimedia content. ACM Computing Surveys (CSUR), 2020, 53(5), 1-38.
|
14 |
Deldjoo, Y., Di Noia, T., Malitesta, D., & Merra, F. A. Leveraging Content-Style Item Representation for Visual Recommendation. In European Conference on Information Retrieval, 2022, Springer, Cham, pp. 84-92.
|
15 |
Mehrabian, A. (1971). Silent messages (Vol. 8, No. 152, p. 30). Belmont, CA: Wadsworth.
|
16 |
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779-788.
|
17 |
Kim, Jong Moo. Analysis of learner's preference on the type of e-learning lecture contents -About basic linguistics subject and theoretic subject- , Korea Design Knowledge Society, 2015, 34, 175-182.
|
18 |
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. 2018. arXiv preprint arXiv:1810.04805.
|
19 |
Namin Shin, Jung Hoon Lee. Students' emotional responses to teachers' voice media and preferred voice features of the teachers, Korean Society Of Educational Technology, 2009, 25(4), 29-52.
|
20 |
Cheng, H. T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., ... & Shah, H. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems, 2016, September, pp. 7-10.
|
21 |
Streamlit library, https://streamlit.io/
|