• Title/Summary/Keyword: 유한 요소 모델 개선

Search Result 191, Processing Time 0.028 seconds

A Basic Study on the Design of the Flexible Keel in the Energy-Storage Prosthetic Foot for the Improvement of the Walking Performance of the Below Knee Amputees (하지 절단환자의 보행 능력 향상을 위한 에너지 저장형 의족의 유연 용골 설계를 위한 기초연구)

  • 장태성;이정주;윤용산;임정옥
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.519-530
    • /
    • 1998
  • In this paper, the basic study on the design of the flexible keel of the energy-storage prosthetic foot was performed in order to Improve the walking performance and Increase the activities of the below knee amputees. Based on the analysis of the anthropometric data and the normal gait on two dimensional sagittal plane available In the literature, we presented a model of the basic structure of the flexible keel of the prosthetic foot. The model of the basic structure was composed of the simple beams, and linear rotational spring and damper. Laminated carbon fiber-reinforced composites were selected as the material of the basic structure model of the flexible keel In order to apply the high strength and light weight materials to the basic structure of the flexible keel of the prosthetic foot. The recoverable strain energy In response to the change of beam shape was calculated bur the finite element analysis and it was suggested that the change of beam shape could be the design variable in flexible keel design. The simulation process was systematically designed by using orthogonal array table in order to design the flexible keel structure which could store the more recoverable strain energy. finite element analysis was carried but according to the design of simulations by using the finite element program ABAQUS and the flexible keel structure of the energy-storage prosthetic foot was obtained from the analysis of variance(ANOVA). The dynamic simulation model of the prosthetic walking using the flexible keel structure was made and the dynamic analysis was carried but during one walk cycle. Based on the above results, an effective design process was presented for the development of the prosthetic fool system.

  • PDF

Design of Battery-Supporting Structure for Reducing Deflection of On-Line Electric Vehicles (OLEV의 처짐량 개선을 위한 배터리 지지구조물 설계)

  • Park, Hong-Ik;Yoo, Ji-Sue;Lee, Jun-Young;Lee, Sang-Beom;Yim, Hong-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.211-216
    • /
    • 2012
  • This paper presents methods to reduce the deflection of the battery-supporting structure on on-line electric vehicles (OLEVs). First, by testing various battery locations, a location is found that increases the dynamic stiffness of the OLEV. Second, static analysis is conducted to analyze the maximum deflection caused by the battery weight. In order to reduce the amount of deflection, the contributions of the battery-supporting structures are analyzed, and reinforcements are inserted. Then, another static analysis is conducted to compare the results of the base model and modified model. Consequently, through the static analysis, both the base model and modified model are similarly improved in terms of deflection, but the modified model is better than the base model at reducing the mass.

Identification of a Nonproportional Damping Matrix Using the Finite Element Model Updating (유한요소 모델 개선기법을 이용한 비비례 감쇠행렬 추정)

  • Min, Cheon-Hong;Kim, Hyung-Woo;Lee, Chang-Ho;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.86-91
    • /
    • 2012
  • A new identification method for a nonproportional damping matrix using the finite element (FE) model updating technique is proposed. Mass and stiffness matrices of the undamped system are identified by FE model updating method. Sensitivity analysis is used to update the FE model, and zero frequencies are considered as design parameters to supplement the information of vibration characteristics. The nonproportional damping matrix is identified through the proposed method. A numerical example is considered to verify the performance of the proposed method. As a result, the damping matrix of the nonproportional system is estimated accurately.

A Modal Testing of Large Naval Vessel Using Main Gun Firing Test (주포 사격시험을 이용한 대형 함정의 모달테스트)

  • Park, Mi-You;Han, Hyung-Suk;Cho, Heung-Gi;Kim, Joong-Gil;Im, Dong-Been;Lee, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The accurate results of finite element analysis are directly related to reliability FE model which is exactly describing dynamic characteristics of target structure. So, a model updating is necessary to establish reliable FE(Finite Element) model with a lot of experience and effort using modal testing. A large structure is too difficult to obtain the dynamic characteristics owing to its weight and size. In this work, using main gun firing test, modal testing was performed to obtain dynamic characteristics of large naval vessel, which is difficult to tap the general modal testing method. The result of experiment was considered its possibility and future plans.

Ultimate Strength Analysis of Space Steel Frames Considering Spread of Plasticity (점진적 소성화를 고려한 공간 강뼈대구조의 극한강도해석)

  • Kim, Sung Bo;Han, Jae Young;Park, Soon Cheol;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.299-311
    • /
    • 2003
  • This paper presents a finite element procedure to estimate the ultimate strength of space frames considering spread of plasticity. The improved displacement field is introduced based on the inclusion of second-order terms of finite rotations. All the non-linear terms due to bending moment, torsional moment, and axial force are precisely considered. The concept of plastic hinges is introduced and the incremental load/displacement method is applied for elasto-plastic analyses. The initial yield surface is defined based on the residual stress, and the full plastification surface is considered under the combined action of axial forces, bending and torsional moments. The elasto-plastic stiffness matrices are derived using the flow rule and the normality condition of the limit function. Finite element solutions for the ultimate strength of space frames are compared with available solutions and experimental results.

Vibration-Based Structural Health Monitoring Techniques and Application Examples (진동기록 계측에 의한 구조물의 건전도 평가 및 적용 예)

  • Cho, Soon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.683-686
    • /
    • 2010
  • 본 논문은 최근 이슈가 되고 있는 대형 건축/토목구조물에 대한 동적계측, 시스템판별, 모델향상 등을 통한 건전도 평가기법에 대하여, 현재까지 개발된 혹은 개발되고 있는 기술사항 들을 소개한다. 특히, 가속도계를 사용하여 의도하는 진동기록을 획득하기 위한 합리적인 Hardware Chain 구성, 이로부터 신뢰성 있는 동적 구조성능치를 추출하기 위한 다양한 고급 모달해석기법 및 보다 자세한 구조정보 획득 및 손상감지 등을 위하여 실험치와 유한요소 해석치를 일치시키는 모델향상기법에 대하여 기술하였다. 또한 이러한 기술들을 실제 구조물인 고층건물 및 비닐하우스 아치구조에 적용하였으며, 이러한 경험에 근거하여 현 모니터링 기술의 문제점 및 향후 개선방향 등을 토의하였다.

  • PDF

Characteristics Analysis of Electro-Magnetic Force driving Actuator for High Voltage Gas Circuit Breaker by Changing Design Parameter (설계 변수 변화에 따른 고전압 가스 차단기용 전자석 조작기(EMFA)의 특성 해석)

  • Kim, Rae-Eun;Kang, Jong-Ho;Choi, Sang-Min;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.911-912
    • /
    • 2007
  • 영구자석형 조작기(PMA)의 단점을 보완한 고전압 차단기용 전자석 조작기인 EMFA는 긴 스트로크를 가지는 차단기에도 사용이 가능하며, 특히 진공 차단기(VCB)용 조작기를 비롯하여, 가스 차단기(GCB)에 적용한 모델도 이미 개발되었다. 다양한 모델에 대한 설계 및 연구가 추가적으로 진행되고 있으나, 아직 설계 방법이 정형화되어 있지 않아 모델에 따라 그 형상이 달라지는 경우가 많다. 이러한 점을 개선하기 위해, 본 논문에서 EMFA의 설계 변수를 변화시켜 가며 나타나는 특성을 홀딩력과 자속밀도를 통해 분석하였다. 나아가 이를 바탕으로 설계 방법의 정형화에 대한 실마리를 제공하고자 한다. 해석에는 2차원 유한요소법을 이용하였고, 설계 변수는 조작기의 초기상태를 기준으로 설정하였다.

  • PDF

Propagation of Structural Waves along Waveguides with Non-Uniformities Using Wavenumber Domain Finite Elements (국부적 불연속을 갖는 도파관을 따라 전파되는 파동에 대한 파수 영역 유한 요소 해석)

  • Ryue, Jungsoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.191-199
    • /
    • 2014
  • Wave reflection and transmission characteristics in waveguides are an important issue in many engineering applications. A combined spectral element and finite element (SE/FE) method is used to investigate the effects of local non-uniformities but limited at relatively low frequencies because the SE is formulated by using a beam theory. For higher frequency applications, a method named a combined spectral super element and finite element (SSE/FE) method was presented recently, replacing spectral elements with spectral super elements. This SSE/FE approach requires a long computing time due to the coupling of SSE and FE matrices. If a local non-uniformity has a uniform cross-section along its short length, the FE part could be further replaced by SSE, which improves performance of the combined SSE/FE method in terms of the modeling effort and computing time. In this paper SSEs are combined to investigate the characteristics of waves propagating along waveguides possessing geometric non-uniformities. Two models are regarded: a rail with a local defect and a periodically ribbed plate. In the case of the rail example, firstly, the results predicted by a combined SSE/FE method are compared with those from the combined SSEs in order to justify that the combined SSEs work properly. Then the SSEs are applied to a ribbed plate which has periodically repeated non-uniformities along its length. For the ribbed plate, the propagation characteristics are investigated in terms of the propagation constant.

A Structural Design Method Using Ensemble Model of RSM and Kriging (반응표면법과 크리깅의 혼합모델을 이용한 구조설계방법)

  • Kim, Nam-Hee;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1630-1638
    • /
    • 2015
  • The finite element analysis has become an essential process to investigate the structural performance in many industry fields. In addition, the computer's performance is improving rapidly, but in large design problems, there is a limit to apply the optimal design techniques. For this, it is general to introduce a metamodel based optimization technique. The method to generate an approximate model can be classified into curve fitting and interpolation, and each representative one is response surface model and kriging interpolation method. This study proposes an ensemble model made of RSM and kriging to solve a structural design problem. The suggested method is applied to the designs of two bar and automobile outer tie rod.

Improvement of Computational Efficiency of the Subspace Iteration Method for Large Finite Element Models (대형 유한요소 고유치 해석에서의 부공간 축차법 효율 개선)

  • Joo, Byung-Hyun;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.551-558
    • /
    • 2003
  • An efficient and reliable subspace iteration algorithm using the block algorithm is proposed. The block algorithm is the method dividing eigenpairs into several blocks when a lot of eigenpairs are required. One of the key for the faster convergence is carefully selected initial vectors. As the initial vectors, the proposed method uses the modified Ritz vectors for guaranteering all the required eigenpairs and the quasi-static Ritz vectors for accelerating convergency of high frequency eigenvectors. Applying the quasi-static Ritz vectors, a shift is always required, and the proper shift based on the geometric average is proposed. To maximize efficiency, this paper estimates the proper number of blocks based on the theoretical amount of calculation in the subspace iteration. And it also considers the problems generated in the process of combining various algorithms and the solutions to the problems. Several numerical experiments show that the proposed subspace iteration algorithm is very efficient, reliable ,and accurate.