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Propagation of Structural Waves along Waveguides with
Non-Uniformities Using Wavenumber Domain Finite Elements
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ABSTRACT: Wave reflection and transmission characteristics in waveguides are an important issue in many
engineering applications. A combined spectral element and finite element (SE/FE) method is used to investigate
the effects of local non-uniformities but limited at relatively low frequencies because the SE is formulated by using
a beam theory. For higher frequency applications, a method named a combined spectral super element and finite
element (SSE/FE) method was presented recently, replacing spectral elements with spectral super elements. This
SSE/FE approach requires a long computing time due to the coupling of SSE and FE matrices. If a local
non-uniformity has a uniform cross-section along its short length, the FE part could be further replaced by SSE,
which improves performance of the combined SSE/FE method in terms of the modeling effort and computing
time. In this paper SSEs are combined to investigate the characteristics of waves propagating along waveguides
possessing geometric non-uniformities. Two models are regarded: a rail with a local defect and a periodically
ribbed plate. In the case of the rail example, firstly, the results predicted by a combined SSE/FE method are
compared with those from the combined SSEs in order to justify that the combined SSEs work properly. Then the
SSEs are applied to a ribbed plate which has periodically repeated non-uniformities along its length. For the ribbed
plate, the propagation characteristics are investigated in terms of the propagation constant.
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I. Introduction

‘Wave propagation along waveguides, like pipes, ducts,
rails, aluminium extrusions, etc., is an important topic in
many engineering applications. When an incident wave in
a waveguide meets a local discontinuity, such as joints,
supports or others, part of the power of the wave will be
reflected and the rest will be transmitted. These reflection
and transmission properties can be used for plenty of
applications. For example, they can be utilized to indicate
the presence of defects located in waveguides, to determine
dynamic parameters of discontinuities, etc.

For simple beam structures, the reflection and trans-
mission induced by discontinuities in beams can be
estimated theoretically'" and also numerically using spectral
elements.”*!

To regard local non-uniformities in waveguides, a finite
element model would be employed and combined with
spectral elements. That is, a beam is separated into two
uniform regions with SEs and a local region with a FE.
These SEs and FE are connected by condensing the FE
nodes at the boundaries because the SE has a single node at
boundary. This combined SE/FE method, however, is
suitable only for low frequencies because SE is formulated
from beam theories. Many applications of this combined
SE/FE approach are reported in the reference 5.

For high frequencies where higher order cross-sectional
deformations of waveguides should be taken into account,
the SE model is not suitable any more. Ryue et al.’® have
extended the combined SE/FE approach to higher
frequency range by employing spectral super element
(SSE) instead of SE. The SSE method is based on a
two-dimensional FE technique, called waveguide finite
element (WFE) method,” ! so that the SSEs can be easily
connected to neighbouring FEs if the same cross-sectional
FE models are used. As an application example of this
method, wave reflection and transmission features induced
by a simple discontinuity in railway tracks were estimated
up to 40 kHz.

To couple the SSE with the FE part, the dynamic
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Fig. 1. Waveguides with a local non-uniformity. (a)
combined SSE model, (b) periodically combined SSE
model. Dots on boundaries represent nodes to be
connected.

stiffness matrix of the FE part needs to be partitioned to the
nodal degrees of freedom at the boundaries and interior.
The inversion of the FE matrices carried out in this
conversion, however, has required a huge computational
burden and memory capacity. So it may take considerably
long time to obtain the wave reflection and transmission
coefficients.

If a local non-uniformity has a uniform cross-section
along its short length, it could be replaced by another SSE,
rather than using a FE. A schematic diagram for this
modified attempt is illustrated in Fig. 1(a).

One further application of the combined SSEs would be
waveguides with periodic non-uniformities, as illustrated
in Fig. 1(d), such as periodically ribbed or supported plate
or cylinders, etc. There are several papers in literature on
theoretical analysis for wave propagation along periodic
beam structures,!'> but a little has found about plates.“S]
In the present study, wave propagation through the
periodically stiffened plate is newly attempted by using the
Floquet’s principle and the SSEs.

In the present paper, the combined SSEs are applied for
two examples: a folded beam with an offset and a
periodically ribbed plate. The first example is to check the
validity of the proposed method with a simple beam model
The second example is an expanded application of the
presented approach for periodic structures. By using the
periodic structure theory, the features of the pass- and
stop-bands are investigated from this ribbed plate example.
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II. Wavenumber domain finite
element modeling

2.1 WFE equations

For infinite or finite length waveguides with homogeneous
cross-sections, wavenumber domain finite element method
B can be used effectively to investigate sustained wave
types and their dispersion relations. The governing WFE
equations are briefly described in this section. Refer to
references 9-11 for more details.

Suppose that there is an elastic waveguide structure
which is infinitely long in one direction, call it the =
-direction, and its cross-section normal to the x-axis is

uniformalong 2. The WFE governing equation is given by
[Ky(—jr)* +Ky(— jr) + Ky~ oM} T=0, )

where K,, K; and K, are stiffness matrices, M is the mass
matrix of the cross-section and U is the cross- sectional
displacement vector.

In the present study, all the wave solutions, including
nearfield waves, are required to predict displacement of
the waveguide with local non-uniformities. Hence Eq. (1)
has to be solved as a polynomial eigenvalue problem about
k for given frequencies. Note that Eq.(3) will have paired
wavenumber solutions, representing the positive- and
negative-going waves at each frequency. For example, for
a cross-sectional model with N dofs, 2N wavenumbers and
mode shapes will be obtained at each w.

The displacement of a finite and semi-infinite length
waveguide structure can be written as a superposition of
each wave solution obtained from Eq.(1). The displace-

ment vector V(z) at frequency w can be written as
V(z) = #E(z)AW, @

V(z,) = &.E,(2)A,W, 3)

where @ is a matrix containing each wave's mode shapes,

E(x) is a diagonal matrix containing the exponential

terms for = and the subscript ‘+* represents variables for
the positive-or negative-going waves along the x-direction,
respectively. In Eqgs. (2) and (3), AW corresponds to the
wave amplitude vector.

Ifan input force vector, F, is specified at the boundaries
of the finite or semi-infinite waveguide structures, the
displacement vector at the boundaries can be calculated
using a dynamic stiffhess matrix of the structure.'”
Equations for and refer to reference 8. in detail. Hence, if
aninput force vector F is given, the nodal displacement W
can be found using a dynamic stiffness matrix D of the
structure by

W=D"'F. 4

2.2 Combined models

Combined model is built by connecting dynamic
stiffness matrices for each segment. Suppose there is a
local discontinuity in the middle of an infinite length
waveguide as illustrated in Fig. 1(a). This system can be
divided into three parts; two semi-infinite SSEs and a finite
SSE. To couple the semi-infinite SSEs with a finite SSE
having a reduced cross-section, the dynamic stiffhess
matrices of them (D_, D and D, in order) need to be
combined. In case of semi-infinite waveguides with N,
dofs, the sizes of D_ and D, become /N, X V. For the
finite SSE with /V, dofs, D has the size of 2.V, X< 2.V,.

The size of the combined dynamic stiffness will be
determined by the largest dofs in the model. If v, > N,
the combined dynamic stiffhess of the connected SSEs will
have a size of 2.V, < 2./V;, given by

_[D_ 0] = {0 0]
D“_[O 0 +D + 0 D.| 5)
where
0 00O
= |0DLo o
D_OODRO' (6)
0000
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InEq. (6), D; and Dy, are submatrices of D, which will
be connected to the semi-infinite SSEs at the lefi-hand
right-hand boundaries, respectively. If external force
vector of size is established for each dofs on the
boundaries, the displacement vector at the boundaries W
can be determined from F and D, as given in Eq. (4).

For periodic waveguides as illustrated in Fig. 1(b), a
dynamic stiffness of a repeated unit segment D is
required. Considering that two SSEs compose a repeated
segment, it may be given by Eq. (14),
™)

D, D
DD=D1+D2:[ - LR],

DRL DRR

where D, and D, denotes the dynamic stiffnesses of the
elements which consist of the repeated unit segment and
the subscripts L and R correspond to the ‘left’ and ‘right’
boundaries of the unit segment.

Since this unit segment is repeated along the x direction,

the Floquet’s theorem can used as given by

o e ®

where T is the transfer matrix and 4 is the propagating
constant which is generally complex, representing amplitude
and phase change, i.e., ;1 = & +ie over a single segment. §
and ¢ are called the attenuation constant and phase constant,
respectively.

Eg. (8) is in the form of eigenvalue problem. However,
the transfer matrix is likely to be ill-conditioned because
the eigenvector is composed by displacements which are
quite small and forces which are quite large, relatively. To
improve the conditioning of the eigenvalue problem,
Zhong’s method™ is introduced to obtain propagating
constant reliably in this study. The details of Zhong’s
method can be found in the references 17,18.

The reformulated eigenvalue problem by the Zhong’s
method is given by

A" A"
z'z{yiofv} g
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where the eigenvalue y= (e * +¢”) ! and

| 0 _DLR]
L= {DRL 0 |

7. { DRL*DLR DRR *DLL].
2 - DLL _DRR DRL - DLR

(10)

From the eigenvalue v of Eq. (9), the propagation

constants of each wave are calculated, which reveal their
stop- and pass-band features.

Using Egs. (7) and (8) from combined SSEs, the

propagating features of waves in periodically non-uniform

waveguides can be dealt with relatively easily, compare to

the conventional FE approach.

I1l, Examples

The combined SSE method described in the previous
section is applied to two examples in this section; connected
beams with an offset and a rail with a sawcut-like defect.
For these two examples, the power reflection and trans-
mission coefficients are calculated, which are caused by
the local non-uniformities. Also the numerical errors of the
presented method are evaluated in terms of the incident
power conservation in order to justify the combined SSE
method.

3.1 Rail with a defect
For arail with a simple sawcut-like defect growing from

the top of the rail head, power reflection and transmission
coefficients have been previously investigated in the
references 8. by using a combined SSE/FE method. In that
calculation, the combined SSE/FE method took several
hours to obtain the results for a size of the defect. The main
reason of the long time spending was due to the inversion
of the FE matrices which are large in size. So if the FE part
is able to be replaced by SSE, the computational burden
would be much diminished.

The cross-sectional models of the rail (UIC60) are

shown in Fig, 2 for the homogeneous and defected parts.
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Since the UIC60 rail has a symmetric cross-section, only
half of the width is modeled. In this example, a sawcut-like
defect in the rail head shown in Fig. 2(b) is considered,
which has 6 mm in length in the x-direction. Dispersion
curves for the homogeneous rail shown in Fig. 2(a) are
reported in the reference 19.

A technique imposing incident waves to the combined
SSE method is the same as those for the combined SSE/FE
approach described in the reference 8. For an incident
wave indexed j, the power reflection and transmission
coefficients for the 7th reflected and transmitted waves are
defined by

I, I}

trn

ER TR T (an

inc me

where r and ¢ denote power reflection and transmission
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Fig. 2. Cross—sectional models of a rail on foundation.
(a) homogeneous rail, (b) the defected cross—section.
the shaded area represents the rail pad.®

coefficients respectively, II denote powers of traveling
waves. The power reflection and transmission coefficients
are calculated up to 40 kHz for the vertical bending wave
in the railhead as an incident, reflected and transmitted
waves of interest. The coefficients predicted by the
combined SSE method are illustrated in Fig. 3. Fig. 3
shows that the vertical bending wave in the rail head has
relatively large reflection in between 17 and 30 kHz while
the large transmission in between 10 and 15 kHz. This
feature of the chosen wave against frequency agrees well
with the wave mode conversion phenomenon called curve
veering.

The results obtained from the combined SSE method are
also compared in Fig. 3 with those from the combined
SSE/FE method. It can be seen from Fig. 3 that the two
methods create almost the same results in whole frequency
range but the computational demand of the former is much
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Fig. 3. Power reflection and transmission coefficients
for the rail with defect, predicted from the combined
SSE/FE method and combined SSE method. (a)
power reflection coefficients, (b) power transmission
coefficients.
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Fig. 4. Errors predicted from the combined SSE/FE
method and combined SSE method for the rail with
defect.

less than that of the latter. The combined SSE method has
taken a couple of minutes to get the result in Fig. 3 while
the combined SSE/FE method has spent several hours to
obtain the same results.

The incident power should be conserved if there is no
damping in the model. That is, the reflected and transmitted

waves should satisfy the condition

ZT’U + thii =1. (12)

Using Eq.(12), the numerical errors predicted from the
combined SSE model and SSE/FE model are illustrated in
Fig. 4 in terms of the power conservation. It was found
from Fig. 4 that both methods possess nearly the same
errors which are low enough compare to the predicted
reflection and transmission coefficients. Therefore, it can
be surely said from this example that the combined SSE
method is more efficient than the combined SSE/FE
method, particularly for complex waveguides at high

frequencies.

3.2 Periodically ribbed plate strip

A plate strip simply supported at both edges is regarded
in this example as illustrated in Fig. 5. The plate was set to
have awidth of 0.5 m, thickness of 2 mm. Detail properties
of the plate and ribs are listed in Table 1. The ribs are
attached on the plate surface with a period of 0.2 m along
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Fig. 5. Periodically ribbed plate strip with simply

supports at both edges.

Table 1. Properties of the periodically ribbed plate strip.

Dimensions Properties

plate width 0.5 m density 7800 kg/m’
late thickness 6 mm >

P Young's 516 Gpa
rib height 9 mm modulus

rib thickness 2 mm

- - Poisson’s ratio 0.3

distance b/w ribs | 0.2 m
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Fig. 6. Dispersion curves of the homogenous plate
listed in Table 1 (dash lines: predicted by the WEF method:
dots: predicted by the SSE/SSE method with a 0.2 m
length periodicity).

the direction as shown in Fig, 5. The strip plate and rib
were modelled with respective 10 and 20 solid elements
and the dofs of 153 and 249 in total, respectively.

Before applying the combined SSE/SSE method to the
ribbed plate, the dispersion curves for homogeneous strip
plate predicted by Eq. (9) is compared in Fig. 6 with those
obtained from the WFE method by Eq.(1) to validate the
SSE/SSE method. These two results must be identical
because the ribs are not involved in this calculation. It is

obviously seen in Fig. 6 that they are the same except the
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SSE/SSE results are bounded from 0 to /1., which is
decided by the length of the periodic segment. From the
results in Fig. 6, it was validated that the SSE/SSE method
is reliable.

For the first three waves marked with circles in Fig, 6,
their deformation shapes are shown in Fig. 7, corresponding
to the waves having the first, second and the third
cross-sectional modes along the y axis. When k, =7/1,,
odd multiples of the half wavelength are placed within /.

On the other hand, when £, = 0, even multiples of the
half wavelength occurs within the period . Discussion
for the bounding frequencies, where the wavenumbers are
0or /1, is presented in the reference 20 in terms of the
deformation of the periodic unit segment.

The bounding frequencies form pass- and stop-
bandscharacteristics of periodic waveguides. For homo-
geneous plates, all frequencies correspond to pass-band
because there are no local non-uniformities along its length.
However, a waveguide with a periodic non-uniformity,
such as a ribbed plate, will have pass- and stop-band
features at bounding frequencies.

Fig. 8 shows the dispersion relations and decaying
features of each wave propagating along the periodically
ribbed plate strip, listed in Table 1. Figs. §(a) and 8(b) come
from the phase constant (¢) and attenuation constant (&)
divided by /., solving Eqg. (16). It can be seen from Fig. 8
that the attenuation occurs at frequencies where &, =0
and /1, and grow for higher order waves. The frequency

Y (m) - y (m) -

yam
yim

X (m)

Fig. 7. Dispersion curves of the homogenous plate
listed in Table 1, generated by repeating a segment
of 0.2 m in length.

bands where the attenuation occurs are called stop-band
and the rest are pass-band, where waves can travel without
decaying due to the periodic ribs. Meanwhile within a
same single wave, for example, the fourth wave with
circular marks in Fig. 8, the attenuation reduces as
frequency increases. This shows that the ribs are acting as
added stiffhess which affects more at low frequencies.
Deformation shapes of the ribbed plate generated by the
fourth wave are displayed in Fig. 9 at two different
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Fig. 8. (a) Dispersion relations and (b) attenuation features
of the periodically ribbed plate strip listed in Table 1.
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Fig. 9. Displacements of wave 4 travelling along the
ribbed plate at 1420 and 2440 Hz marked in Fig. 8,
which belong to its stop—bands.
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Fig. 10. Displacements of waves 2 and 3 travelling
along the ribbed plate in their pass-bands at 1000 Hz.

frequencies marked with circles in Fig. 8. It can be seen
from Fig, 9 that the wave decays along the x axis in their
stop-bands.

Since the attenuation at 1420 Hz is much higher than
that at 2440 Hz, the wave at 1420 Hz decays more rapidly.
On the other hand, waves 2 and 3 propagating within their
pass-bands are illustrated in Fig. 10 at 1 kHz. The deformation
patterns in Fig. 11 shows that the waves travel along the x
direction with amplitudes modulated or enveloped.

V. Conclusions

In this paper, wave propagation along waveguides with
local or periodic non-uniformities was investigated by
combining SSEs. Non-uniformities which have uniform
cross-sections along their lengths were modeled by SSEs,
instead of FEs. So, in the present study, the combined
SSE/FE method was improved by replacing the FE part
with a SSE and named it a combined SSE method.

Two examples, a rail with a sawcut-like defect and a
periodically ribbed plate, were investigated in the present
paper. For the first example, the power reflection and
transmission coefficients were predicted, caused by the
local non-uniformities. From this application, it was found
that the errors of the combined SSE method are fairly small
and almost identical to those of the combined SSE/FE method.

In the second example, a periodic structure theory was
introduced and used together with the combined SSE
method to predict wave propagation along periodically
non-uniform waveguides. From this example, the pass-

and stop-band characteristics of the ribbed strip plate were
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obtained by using a periodic structure theory and dynamics
stiffness matrix generated by the combined SSE method.
As the further application, the same approach is going to
be applied to the ribbed cylinders and then attempted to
couple external fluids.
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