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ABSTRACT: Wave reflection and transmission characteristics in waveguides are an important issue in many 

engineering applications. A combined spectral element and finite element (SE/FE) method is used to investigate 

the effects of local non-uniformities but limited at relatively low frequencies because the SE is formulated by using 

a beam theory. For higher frequency applications, a method named a combined spectral super element and finite 

element (SSE/FE) method was presented recently, replacing spectral elements with spectral super elements. This 

SSE/FE approach requires a long computing time due to the coupling of SSE and FE matrices. If a local 

non-uniformity has a uniform cross-section along its short length, the FE part could be further replaced by SSE, 

which improves performance of the combined SSE/FE method in terms of the modeling effort and computing 

time. In this paper SSEs are combined to investigate the characteristics of waves propagating along waveguides 

possessing geometric non-uniformities. Two models are regarded: a rail with a local defect and a periodically 

ribbed plate. In the case of the rail example, firstly, the results predicted by a combined SSE/FE method are 

compared with those from the combined SSEs in order to justify that the combined SSEs work properly. Then the 

SSEs are applied to a ribbed plate which has periodically repeated non-uniformities along its length. For the ribbed 

plate, the propagation characteristics are investigated in terms of the propagation constant.
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초    록: 파이프, 평판과 같이 단면의 형상이 길이 방향으로 일정한 도파관 구조물을 따라 전파되는 진동의 반사 및 

투과 특성은 여러 공학 분야에서 응용되는 중요한 주제이다. 도파관에  조인트 또는 균열 등의 국부적 불연속이 있는 

경우, 스펙트럴 요소(spectral element)와 유한 요소(finite elment)를 결합한 SE/FE 방법이 주로 사용되고 있다. 그러

나 이 방법은 보 이론에 기반한 스펙트럴 요소가 사용되므로 저주파수 대역 해석에 국한되는 단점이 있다. 고주파수 

대역 해석에는 스펙트럴 수퍼 요소(spectral super element)와 유한 요소를 결합한 SSE/FE 방법이 제안되었으나 유한 

요소와 스펙트럼 요소의 연성으로 인해 많은 연산 시간이 요구된다. 이러한 문제점을 개선하고자, 본 연구에서는 국부

적 불연속 구간의 단면이 일정한 경우에 대해 국부적 불연속 구간을 스펙트럴 수퍼 요소로 대체한 SSE/SSE 연성 해석

을 시도하였다. 적용 모델로는 국부적 결함을 가진 레일의 파동 반사 및 투과, 그리고 주기적 보강재를 가진 평판의 진동 

전파에 대해 적용하였다. 결함을 가진 레일의 해석 예를 통해, 본 논문에서 사용한 SSE/SSE 방법과 기존의 SSE/FE 

방법의 성능을 비교하였다. 보강재를 가진 평판의 예를 통해서는 반복 구조를 가진 도파관의 파동 전파 특성 해석에 

SSE/SSE 방법이 유용함을 확인하였다.
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(a)

(b)

Fig. 1. Waveguides with a local non-uniformity. (a) 

combined SSE model, (b) periodically combined SSE 

model. Dots on boundaries represent nodes to be 

connected.

I. Introduction

Wave propagation along waveguides, like pipes, ducts, 

rails, aluminium extrusions, etc., is an important topic in 

many engineering applications. When an incident wave in 

a waveguide meets a local discontinuity, such as joints, 

supports or others, part of the power of the wave will be 

reflected and the rest will be transmitted. These reflection 

and transmission properties can be used for plenty of 

applications. For example, they can be utilized to indicate 

the presence of defects located in waveguides, to determine 

dynamic parameters of discontinuities, etc.

For simple beam structures, the reflection and trans-

mission induced by discontinuities in beams can be 

estimated theoretically[1] and also numerically using spectral 

elements.[2-5] 

To regard local non-uniformities in waveguides, a finite 

element model would be employed and combined with 

spectral elements. That is, a beam is separated into two 

uniform regions with SEs and a local region with a FE. 

These SEs and FE are connected by condensing the FE 

nodes at the boundaries because the SE has a single node at 

boundary. This combined SE/FE method, however, is 

suitable only for low frequencies because SE is formulated 

from beam theories. Many applications of this combined 

SE/FE approach are reported in the reference 5.

For high frequencies where higher order cross-sectional 

deformations of waveguides should be taken into account, 

the SE model is not suitable any more. Ryue et al.[8] have 

extended the combined SE/FE approach to higher 

frequency range by employing spectral super element 

(SSE) instead of SE. The SSE method is based on a 

two-dimensional FE technique, called waveguide finite 

element (WFE) method,[9-11] so that the SSEs can be easily 

connected to neighbouring FEs if the same cross-sectional 

FE models are used. As an application example of this 

method, wave reflection and transmission features induced 

by a simple discontinuity in railway tracks were estimated 

up to 40 kHz.

To couple the SSE with the FE part, the dynamic 

stiffness matrix of the FE part needs to be partitioned to the 

nodal degrees of freedom at the boundaries and interior. 

The inversion of the FE matrices carried out in this 

conversion, however, has required a huge computational 

burden and memory capacity. So it may take considerably 

long time to obtain the wave reflection and transmission 

coefficients. 

If a local non-uniformity has a uniform cross-section 

along its short length, it could be replaced by another SSE, 

rather than using a FE. A schematic diagram for this 

modified attempt is illustrated in Fig. 1(a). 

One further application of the combined SSEs would be 

waveguides with periodic non-uniformities, as illustrated 

in Fig. 1(d), such as periodically ribbed or supported plate 

or cylinders, etc. There are several papers in literature on 

theoretical analysis for wave propagation along periodic 

beam structures,[12-14] but a little has found about plates.[15] 

In the present study, wave propagation through the 

periodically stiffened plate is newly attempted by using the 

Floquet’s principle and the SSEs. 

In the present paper, the combined SSEs are applied for 

two examples: a folded beam with an offset and a 

periodically ribbed plate. The first example is to check the 

validity of the proposed method with a simple beam model 

The second example is an expanded application of the 

presented approach for periodic structures. By using the 

periodic structure theory, the features of the pass- and 

stop-bands are investigated from this ribbed plate example. 
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II. Wavenumber domain finite 

element modeling 

2.1 WFE equations

For infinite or finite length waveguides with homogeneous 

cross-sections, wavenumber domain finite element method 

[9-11] can be used effectively to investigate sustained wave 

types and their dispersion relations. The governing WFE 

equations are briefly described in this section. Refer to 

references 9-11 for more details. 

Suppose that there is an elastic waveguide structure 

which is infinitely long in one direction, call it the 

-direction, and its cross-section normal to the x-axis is 

uniform along . The WFE governing equation is given by 

K
K


K




MU (1)

where K

, K


 and K


 are stiffness matrices, M is the mass 

matrix of the cross-section and U is the cross- sectional 

displacement vector. 

In the present study, all the wave solutions, including 

nearfield waves, are required to predict displacement of 

the waveguide with local non-uniformities. Hence Eq. (1) 

has to be solved as a polynomial eigenvalue problem about 

 for given frequencies. Note that Eq.(3) will have paired 

wavenumber solutions, representing the positive- and 

negative-going waves at each frequency. For example, for 

a cross-sectional model with N dofs, 2N wavenumbers and 

mode shapes will be obtained at each .

The displacement of a finite and semi-infinite length 

waveguide structure can be written as a superposition of 

each wave solution obtained from Eq.(1). The displace-

ment vector V  at frequency  can be written as

V  EAW (2)

V±  ±E±A±W (3)

where  is a matrix containing each wave's mode shapes, 

  is a diagonal matrix containing the exponential 

terms for  and the subscript ‘±’ represents variables for 

the positive-or negative-going waves along the x-direction, 

respectively. In Eqs. (2) and (3), AW  corresponds to the 

wave amplitude vector.

If an input force vector, F , is specified at the boundaries 

of the finite or semi-infinite waveguide structures, the 

displacement vector at the boundaries can be calculated 

using a dynamic stiffness matrix of the structure.[16] 

Equations for and refer to reference 8. in detail. Hence, if 

an input force vector F  is given, the nodal displacement W  

can be found using a dynamic stiffness matrix D  of the 

structure by 

WD

F (4)

2.2 Combined models

Combined model is built by connecting dynamic 

stiffness matrices for each segment. Suppose there is a 

local discontinuity in the middle of an infinite length 

waveguide as illustrated in Fig. 1(a). This system can be 

divided into three parts; two semi-infinite SSEs and a finite 

SSE. To couple the semi-infinite SSEs with a finite SSE 

having a reduced cross-section, the dynamic stiffness 

matrices of them (D, D  and D in order) need to be 

combined. In case of semi-infinite waveguides with  

dofs, the sizes of D and D become ×. For the 

finite SSE with  dofs, D  has the size of ×. 

 The size of the combined dynamic stiffness will be 

determined by the largest dofs in the model. If  , 

the combined dynamic stiffness of the connected SSEs will 

have a size of ×, given by

D 



 D 

 




  D 




  

 D




 (5)

where 

D 






 

 DL

 

 

 

 

DR 

 





 . (6)
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In Eq. (6), DL and DR  are submatrices of D , which will 

be connected to the semi-infinite SSEs at the left-hand 

right-hand boundaries, respectively. If external force 

vector of size is established for each dofs on the 

boundaries, the displacement vector at the boundaries W  

can be determined from F  and Dc as given in Eq. (4). 

For periodic waveguides as illustrated in Fig. 1(b), a 

dynamic stiffness of a repeated unit segment Dp is 

required. Considering that two SSEs compose a repeated 

segment, it may be given by Eq. (14), 

D
p
D  D 




 DLL DLR

DRL DRR




 (7)

where D and D denotes the dynamic stiffnesses of the 

elements which consist of the repeated unit segment and 

the subscripts L and R correspond to the ‘left’ and ‘right’ 

boundaries of the unit segment. 

Since this unit segment is repeated along the x direction, 

the Floquet’s theorem can used as given by

VR

FR
TVL

FL
 VR

FR
 (8)

where T is the transfer matrix and  is the propagating 

constant which is generally complex, representing amplitude 

and phase change, i.e.,   over a single segment.  

and  are called the attenuation constant and phase constant, 

respectively. 

Eq. (8) is in the form of eigenvalue problem. However, 

the transfer matrix is likely to be ill-conditioned because 

the eigenvector is composed by displacements which are 

quite small and forces which are quite large, relatively. To 

improve the conditioning of the eigenvalue problem, 

Zhong’s method[14] is introduced to obtain propagating 

constant reliably in this study. The details of Zhong’s 

method can be found in the references 17,18.

The reformulated eigenvalue problem by the Zhong’s 

method is given by 

Z

ZVL

VR
VL

VR
 (9)

where the eigenvalue    and

Z





  DLR

DRL 






Z





 DRL

DLR DRR
DLL

DLL
DRR DRL

DLR






(10)

From the eigenvalue  of Eq. (9), the propagation 

constants of each wave are calculated, which reveal their 

stop- and pass-band features. 

Using Eqs. (7) and (8) from combined SSEs, the 

propagating features of waves in periodically non-uniform 

waveguides can be dealt with relatively easily, compare to 

the conventional FE approach.

III. Examples

The combined SSE method described in the previous 

section is applied to two examples in this section; connected 

beams with an offset and a rail with a sawcut-like defect. 

For these two examples, the power reflection and trans-

mission coefficients are calculated, which are caused by 

the local non-uniformities. Also the numerical errors of the 

presented method are evaluated in terms of the incident 

power conservation in order to justify the combined SSE 

method.

3.1 Rail with a defect

For a rail with a simple sawcut-like defect growing from 

the top of the rail head, power reflection and transmission 

coefficients have been previously investigated in the 

references 8. by using a combined SSE/FE method. In that 

calculation, the combined SSE/FE method took several 

hours to obtain the results for a size of the defect. The main 

reason of the long time spending was due to the inversion 

of the FE matrices which are large in size. So if the FE part 

is able to be replaced by SSE, the computational burden 

would be much diminished. 

The cross-sectional models of the rail (UIC60) are 

shown in Fig. 2 for the homogeneous and defected parts. 
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(a)

(b)

Fig. 2. Cross-sectional models of a rail on foundation.

(a) homogeneous rail, (b) the defected cross-section. 

the shaded area represents the rail pad.[8]

(a)

(b)

Fig. 3. Power reflection and transmission coefficients 

for the rail with defect, predicted from the combined 

SSE/FE method and combined SSE method. (a) 

power reflection coefficients, (b) power transmission 

coefficients. 

Since the UIC60 rail has a symmetric cross-section, only 

half of the width is modeled. In this example, a sawcut-like 

defect in the rail head shown in Fig. 2(b) is considered, 

which has 6 mm in length in the x-direction. Dispersion 

curves for the homogeneous rail shown in Fig. 2(a) are 

reported in the reference 19. 

A technique imposing incident waves to the combined 

SSE method is the same as those for the combined SSE/FE 

approach described in the reference 8. For an incident 

wave indexed j, the power reflection and transmission 

coefficients for the ith reflected and transmitted waves are 

defined by

 








  








 (11)

where  and  denote power reflection and transmission 

coefficients respectively,  denote powers of traveling 

waves. The power reflection and transmission coefficients 

are calculated up to 40 kHz for the vertical bending wave 

in the railhead as an incident, reflected and transmitted 

waves of interest. The coefficients predicted by the 

combined SSE method are illustrated in Fig. 3. Fig. 3 

shows that the vertical bending wave in the rail head has 

relatively large reflection in between 17 and 30 kHz while 

the large transmission in between 10 and 15 kHz. This 

feature of the chosen wave against frequency agrees well 

with the wave mode conversion phenomenon called curve 

veering. 

The results obtained from the combined SSE method are 

also compared in Fig. 3 with those from the combined 

SSE/FE method. It can be seen from Fig. 3 that the two 

methods create almost the same results in whole frequency 

range but the computational demand of the former is much 
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Fig. 4. Errors predicted from the combined SSE/FE 

method and combined SSE method for the rail with 

defect.

Fig. 5. Periodically ribbed plate strip with simply 

supports at both edges. 

Table 1. Properties of the periodically ribbed plate strip.

Dimensions Properties

plate width 0.5 m density 7800 kg/m3

plate thickness 6 mm Young’s 

modulus
210 GPa

rib height 9 mm

rib thickness 2 mm
Poisson’s ratio 0.3

distance b/w ribs 0.2 m

Fig. 6. Dispersion curves of the homogenous plate 

listed in Table 1 (dash lines: predicted by the WEF method;

dots: predicted by the SSE/SSE method with a 0.2 m 

length periodicity).

less than that of the latter. The combined SSE method has 

taken a couple of minutes to get the result in Fig. 3 while 

the combined SSE/FE method has spent several hours to 

obtain the same results.

The incident power should be conserved if there is no 

damping in the model. That is, the reflected and transmitted 

waves should satisfy the condition 







  (12)

Using Eq.(12), the numerical errors predicted from the 

combined SSE model and SSE/FE model are illustrated in 

Fig. 4 in terms of the power conservation. It was found 

from Fig. 4 that both methods possess nearly the same 

errors which are low enough compare to the predicted 

reflection and transmission coefficients. Therefore, it can 

be surely said from this example that the combined SSE 

method is more efficient than the combined SSE/FE 

method, particularly for complex waveguides at high 

frequencies. 

3.2 Periodically ribbed plate strip

A plate strip simply supported at both edges is regarded 

in this example as illustrated in Fig. 5. The plate was set to 

have a width of 0.5 m, thickness of 2 mm. Detail properties 

of the plate and ribs are listed in Table 1. The ribs are 

attached on the plate surface with a period of 0.2 m along 

the direction as shown in Fig. 5. The strip plate and rib 

were modelled with respective 10 and 20 solid elements 

and the dofs of 153 and 249 in total, respectively.

Before applying the combined SSE/SSE method to the 

ribbed plate, the dispersion curves for homogeneous strip 

plate predicted by Eq. (9) is compared in Fig. 6 with those 

obtained from the WFE method by Eq.(1) to validate the 

SSE/SSE method. These two results must be identical 

because the ribs are not involved in this calculation. It is 

obviously seen in Fig. 6 that they are the same except the 
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Fig. 7. Dispersion curves of the homogenous plate 

listed in Table 1, generated by repeating a segment 

of 0.2 m in length. 

(a)

(b)

Fig. 8. (a) Dispersion relations and (b) attenuation features

of the periodically ribbed plate strip listed in Table 1.

Fig. 9. Displacements of wave 4 travelling along the 

ribbed plate at 1420 and 2440 Hz marked in Fig. 8, 

which belong to its stop-bands.  

SSE/SSE results are bounded from 0 to  , which is 

decided by the length of the periodic segment. From the 

results in Fig. 6, it was validated that the SSE/SSE method 

is reliable. 

For the first three waves marked with circles in Fig. 6, 

their deformation shapes are shown in Fig. 7, corresponding 

to the waves having the first, second and the third 

cross-sectional modes along the y axis. When   , 

odd multiples of the half wavelength are placed within  . 

On the other hand, when  , even multiples of the 

half wavelength occurs within the period  . Discussion 

for the bounding frequencies, where the wavenumbers are 

0 or  , is presented in the reference 20 in terms of the 

deformation of the periodic unit segment.

The bounding frequencies form pass- and stop- 

bandscharacteristics of periodic waveguides. For homo-

geneous plates, all frequencies correspond to pass-band 

because there are no local non-uniformities along its length. 

However, a waveguide with a periodic non-uniformity, 

such as a ribbed plate, will have pass- and stop-band 

features at bounding frequencies.

Fig. 8 shows the dispersion relations and decaying 

features of each wave propagating along the periodically 

ribbed plate strip, listed in Table 1. Figs. 8(a) and 8(b) come 

from the phase constant () and attenuation constant () 

divided by  , solving Eq. (16). It can be seen from Fig. 8 

that the attenuation occurs at frequencies where   

and   and grow for higher order waves. The frequency 

bands where the attenuation occurs are called stop-band 

and the rest are pass-band, where waves can travel without 

decaying due to the periodic ribs. Meanwhile within a 

same single wave, for example, the fourth wave with 

circular marks in Fig. 8, the attenuation reduces as 

frequency increases. This shows that the ribs are acting as 

added stiffness which affects more at low frequencies. 

Deformation shapes of the ribbed plate generated by the 

fourth wave are displayed in Fig. 9 at two different 
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Fig. 10. Displacements of waves 2 and 3 travelling 

along the ribbed plate in their pass-bands at 1000 Hz.

frequencies marked with circles in Fig. 8. It can be seen 

from Fig. 9 that the wave decays along the x axis in their 

stop-bands. 

Since the attenuation at 1420 Hz is much higher than 

that at 2440 Hz, the wave at 1420 Hz decays more rapidly. 

On the other hand, waves 2 and 3 propagating within their 

pass-bands are illustrated in Fig. 10at 1 kHz. The deformation 

patterns in Fig. 11 shows that the waves travel along the x 

direction with amplitudes modulated or enveloped. 

V. Conclusions

In this paper, wave propagation along waveguides with 

local or periodic non-uniformities was investigated by 

combining SSEs. Non-uniformities which have uniform 

cross-sections along their lengths were modeled by SSEs, 

instead of FEs. So, in the present study, the combined 

SSE/FE method was improved by replacing the FE part 

with a SSE and named it a combined SSE method. 

Two examples, a rail with a sawcut-like defect and a 

periodically ribbed plate, were investigated in the present 

paper. For the first example, the power reflection and 

transmission coefficients were predicted, caused by the 

local non-uniformities. From this application, it was found 

that the errors of the combined SSE method are fairly small 

and almost identical to those of the combined SSE/FE method. 

In the second example, a periodic structure theory was 

introduced and used together with the combined SSE 

method to predict wave propagation along periodically 

non-uniform waveguides. From this example, the pass- 

and stop-band characteristics of the ribbed strip plate were 

obtained by using a periodic structure theory and dynamics 

stiffness matrix generated by the combined SSE method. 

As the further application, the same approach is going to 

be applied to the ribbed cylinders and then attempted to 

couple external fluids.
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