• Title/Summary/Keyword: 유한 버퍼 대기행렬

Search Result 11, Processing Time 0.02 seconds

Blocking Probability in an M/D/1/K Queue (M/D/1/K 대기행렬에서의 차단확률)

  • Seo, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.241-247
    • /
    • 2008
  • In this study we consider an M/D/1 queue with a finite buffer. Due to the finiteness of the buffer capacity arriving customers can not join the system and turn away without service when the buffer is full. Even though a computational method for blocking probabilities in an M/D/1/K queue is already known, it is very complex to use. The aim of this study is to propose a new way to compute blocking probability by using (max,+)-algebra. Our approach provide a totally different and easier way to compute blocking probabilities and it is, moreover, immediately applicable to more generous queueing systems.

  • PDF

Stationary Waiting Times in Simple Fork-and-Join Queues with Finite Buffers and Communication Blocking (통신차단규칙을 따르는 유한버퍼 단순 조립형 대기행렬 망에서의 안정대기시간)

  • Seo, Dong-Won;Lee, Seung-Man
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.109-117
    • /
    • 2010
  • In this study, we consider stationary waiting times in a simple fork-and-join type queue which consists of three single-server machines, Machine 1, Machine 2, and Assembly Machine. We assume that the queue has a renewal arrival process and that independent service times at each node are either deterministic or non-overlapping. We also assume that the Machines 1 and 2 have an infinite buffer capacity whereas the Assembly Machine has two finite buffers, one for each machine. Services at each machine are given by FIFO service discipline and a communication blocking policy. We derive the explicit expressions for stationary waiting times at all nodes as a function of finite buffer capacities by using (max,+)-algebra. Various characteristics of stationary waiting times such as mean, higher moments, and tail probability can be computed from these expressions.

A Study on the Comparison of Storage Sharing Schemes in Queueing System with Finite Capacity Buffer (유한 용량의 버퍼를 가지는 대기행렬에서의 저장공간 공유방안 비교에 관한 연구)

  • Kwon Soo-Tae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.4
    • /
    • pp.15-22
    • /
    • 2004
  • 본 논문의 목적은 유한 저장공간을 가지는 대기행렬 시스템에서 완전공유(Complete Sharing), 완전분할(Complete Partitioning), 최소할당공유(Sharing with Minimum Allocation)와 같은 다양한 저장공간 공유방안들을 비교ㆍ분석하는 것으로, 이를 위하여 먼저 각각의 공유방안에서의 대기행렬 안정상태확률을 효율적으로 구할 수 있는 방법이 제시되었다. 다음으로 각각의 저장공간 공유방안을 특징짓는데 필요한 몇 가지 성질들이 규명되었으며, 이를 토대로 각각의 저장공간 공유방안에 대하여 시스템 성능척도인 생산률들을 도출하는 한편, 이들의 대소관계를 파악하고, 수치실험을 통하여 이를 입증하였다.

Explicit Expression for Moment of Waiting Time in a DBR Line Production System with Constant Processing Times Using Max-plus Algebra (Max-plus 대수를 이용한 상수 공정시간을 갖는 DBR 라인 생산시스템에서의 대기시간에 대한 간결한 표현식)

  • Park, Philip;Seo, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.2
    • /
    • pp.11-17
    • /
    • 2015
  • Although systems with finite capacities have been the topic of much study, there are as of yet no analytic expressions for (higher) moment and tail probability of stationary waiting times in systems with even constant processing times. The normal queueing theory cannot properly handle such systems due to the difficulties caused by finite capacity. In this study, for a DBR (Drum-Buffer-Rope) line production system with constant processing times, we introduce analytic expressions by using previous results obtained using a max-plus algebraic approach.

A Queueing Model for Performance Analysis of SPAX Inter-Node Communication System (고속병렬컴퓨터1)(SPAX) 노드간 통신시스템의 성능분석을 위한 대기행렬모형)

  • Cho, Il-Yeon;Lee, Jae-Kyung;Kim, Hae-Jin
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.1
    • /
    • pp.33-39
    • /
    • 1998
  • A queueing model for performance evaluation of finite buffered inter-node communication system is proposed in this paper. Each components are modeled as M/M/I/B queues to obtain the steady state probabilities and ar-rival rate and to analyze finite buffer behavior, The overall sysrem is integrated as series queues with blocking. Average delay and throughput are the performance measures studied in this analysis. The analytical results are first validated through simulation. Next, the effect of buffer length is discussed using the proposed model.

  • PDF

Spreadsheet Model Approach for Buffer-Sharing Fork-Join Production Systems with General Processing Times and Structure (일반 공정시간과 구조를 갖는 버퍼 공유 분기-접합 생산시스템의 스프레드시트 모형 분석)

  • Seo, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.3
    • /
    • pp.65-74
    • /
    • 2019
  • For many years, it has been widely studied on fork-join production systems but there is not much literature focusing on the finite buffer(s) of either individuals or shared, and generally distributed processing times. Usually, it is difficult to handle finite buffer(s) through a standard queueing theoretical approach. In this study, by using the max-plus algebraic approach we studied buffer-shared fork-join production systems with general processing times. However, because it cannot provide proper computational ways for performance measures, we developed simulation models using @RISK software and the expressions derived from max-plus algebra. From the simulation experiments, we compared some properties on waiting time with respect to a buffer capacity under two blocking policies: BBS (Blocking Before Service) and BAS (Blocking After Service).

Analysis of Optimal Buffer Capacities in 3-node Tandem Queues with Blocking (3-노(盧)드 유한 버퍼 일렬대기행렬에서의 최적 버퍼 크기에 대한 분석)

  • Seo, Dong-Won
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.881-889
    • /
    • 2005
  • In this study, we consider characteristics of waiting times in single-server 3-node tandem queues with a Poisson arrival process, finite buffers and deterministic or non-overlapping service times at each queue. There are three buffers: one at the first node is infinite and the others are finite. The explicit expressions of waiting times in all areas of the systems, which are driven as functions of finite buffer capacities, show that the sojourn time does not depend on the finite buffer capacities and also allow one to compute and compare characteristics of waiting times at all areas of the system under two blocking policies: communication and manufacturing blocking. As an application of these results, moreover, an optimization problem which determines the smallest buffer capacities satisfying predetermined probabilistic constraints on waiting times is considered. Some numerical examples are also provided.

  • PDF

Determining the Optimal Buffer Sizes in Poisson Driven 3-node Tandem Queues using (Max, +)-algebra ((Max, +)-대수를 이용한 3-노드 유한 버퍼 일렬대기행렬 망에서 최적 버퍼 크기 결정)

  • Seo, Dong-Won;Hwang, Seung-June
    • Korean Management Science Review
    • /
    • v.24 no.1
    • /
    • pp.25-34
    • /
    • 2007
  • In this study, we consider stationary waiting times in finite-buffer 3-node single-server queues in series with a Poisson arrival process and with either constant or non-overlapping service times. We assume that each node has a finite buffer except for the first node. The explicit expressions of waiting times in all areas of the stochastic system were driven as functions of finite buffer capacities. These explicit forms show that a system sojourn time does not depend on the finite buffer sizes, and also allow one to compute and compare characteristics of stationary waiting times at all areas under two blocking rules communication and manufacturing blocking. The goal of this study is to apply these results to an optimization problem which determines the smallest buffer capacities satisfying predetermined probabilistic constraints on stationary waiting times at all nodes. Numerical examples are also provided.

Application of (Max, +)-algebra to the Waiting Times in Deterministic 3-node Tandem Queues with Blocking ((Max, +)-대수를 이용한 3-노드 유한 버퍼 일렬대기행렬에서의 대기시간 분석)

  • Seo Dong-Won
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.2
    • /
    • pp.73-80
    • /
    • 2005
  • In this paper, we consider characteristics of waiting times in s1n91e-server 3-node tandem queues with finite buffers, a Poisson arrival process and deterministic service times at all nodes. There are three buffers : one at the first node is infinite and the others are finite. We obtain the fact that sojourn time or departure process is independent of the capacities of the finite buffers and does not depend on the order of service times, which are the same results in the literature. Moreover, the explicit expressions of stationary waiting times in all areas of the systems can be derived as functions of the finite buffer capacities. We also disclose a relationship of waiting times in subareas of the systems between two blocking policies communication and manufacturing. Some numerical examples are also provided.

Application of (Max, +)-algebra to the Waiting Times in Deterministic 2-node Tandem Queues with Blocking ((Max, +)-대수를 이용한 2-노드 유한 버퍼 일렬대기행렬에서의 대기시간 분석)

  • Seo Dong-Won
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.1
    • /
    • pp.149-159
    • /
    • 2005
  • In this study, we consider characteristics of stationary waiting times in single-server 2-node tandem queues with a finite buffer, a Poisson arrival process and deterministic service times. The system has two buffers: one at the first node is infinite and the other one at the second node is finite. We show that the sojourn time or departure process does not depend on the capacity of the finite buffer and on the order of nodes (service times), which are the same as the previous results. Furthermore, the explicit expressions of waiting times at the first node are given as a function of the capacity of the finite buffer and we are able to disclose a relationship of waiting times between under communication blocking and under manufacturing blocking. Some numerical examples are also given.