
http://dx.doi.org/10.9709/JKSS.2015.24.2.011
ISSN 1225-5904

제24권 제2호 2015년 6월 11

Explicit Expression for Moment of Waiting Time in a DBR Line 
Production System with Constant Processing Times Using 

Max-plus Algebra
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Max-plus 대수를 이용한 상수 공정시간을 갖는 DBR 라인 생산시스템에서의 
대기시간에 대한 간결한 표현식

Philip Park ･서동원*

ABSTRACT

Although systems with finite capacities have been the topic of much study, there are as of yet no analytic 

expressions for (higher) moment and tail probability of stationary waiting times in systems with even constant 

processing times. The normal queueing theory cannot properly handle such systems due to the difficulties caused 

by finite capacity. In this study, for a DBR (Drum-Buffer-Rope) line production system with constant processing 

times, we introduce analytic expressions by using previous results obtained using a max-plus algebraic approach. 
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요   약

유한버퍼를 갖는 시스템에 대한 분석은 광범위하게 연구되어 왔다. 하지만, 상수 공정시간을 갖는 시스템에 대해서도 안정

대기시간에 대한 고차평균과 꼬리확률에 대한 간결한 표현식은 소개된 적이 없다. 유한버퍼로 인한 차단현상으로 유발되는 

복잡성 때문에 일반적인 대기행렬이론은 이를 적절히 다루지 못한다. 본 연구에서는 max-plus 대수를 활용한 기존 연구결과로

부터 상수 공정시간과 DBR (Drum-Buffer-Rope) 재고규칙을 따르는 라인생산시스템에서의 대기시간에 대한 간결한 표현식을 

도출하였다.

주요어 : DBR, 유한버퍼, max-plus 대수, 대기시간
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1. Introduction 

In order to improve production competitiveness and 

effectiveness, the investigation of various system per-

formances is crucial. Such analytical results can be utilized 

in the design and control of the flow of materials and 

products with the intent of avoiding congestion and 

improving profits across different systems.

Although finite-capacity systems have been widely 

studied, research on these systems has provided only a 

few explicit (analytic) results. Due to the difficulties 

caused by finite capacities, obtaining analytic solutions 

is not an easy task; most studies have been limited in 

the number of nodes and servers, distributions of arrival 

and service times, and other factors.

WIP (work-in-process) may be either under processing 
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Fig. 1. a DBR system with m-node

or waiting for the next processing. WIP is necessary in 

most circumstances to pace the flow through imperfectly 

balanced systems. WIP is also necessary as it improves 

throughput, QoS (Quality of Service), tardiness, cycle 

time, and so on. In a DBR (Drum-Buffer-Rope) controlled 

system, a common finite capacity buffer is shared by 

the upstream nodes of bottleneck node(s). The DBR system 

pulls work only once the line begins. Once input enters 

the system, processes continue without the permission 

of the following nodes, and WIP moves on to the next 

nodes.

Under DBR, a drumbeat for the rest of the plant is 

maintained by sequencing work to be done at the bottle-

neck operation. The drumbeat is then protected by main-

taining a time buffer for parts going to the bottleneck. 

A rope is tied from the bottleneck to material release 

points to ensure that material is released only at the 

rate that is used by the bottleneck, thereby preventing 

excessive increase in inventory. Radovilsky [10] simply 

modeled a bottleneck node as an M/M/1/K queue and 

represented an optimal buffer size with a maximum 

profit. Louw and Page [9] also proposed an open queueing 

network model to estimate the size of the time buffers 

in production systems under the TOC (theory of constraints). 

Ye and Han [11] developed more simplified methods of 

determining the sizes of the constraint buffer and assembly 

buffer by using a machine view’s bill of routing instead 

of a process view's bill of routing.

Unlike the infinite buffer case, the distribution of 

waiting times in tandem queues with finite buffers is 

not simply given as a product form due to the blocking 

between nodes. In response to this problem, some re-

searchers have proposed various approximation methods 

by decomposition and simulation. In this study, however, 

we use an exact solution procedure based on max-plus 

algebra. The advantage of such an approach is that the 

max-plus linear system now needs only two kinds of 

operators, “max” and “plus,” to represent its performance 

characteristics.

As is well known, the max-plus linear system (MPL) 

includes various probabilistic systems commonly found 

in (tele)communication and computer networks such as 

tandem queues with blocking and fork-and-join type 

queues. [1, 3, 7] provided the basic max-plus algebra 

and some preliminaries on the waiting times in MPLs. 

Taking into consideration DBR WIP-control policy, we 

introduce explicit expressions for higher moments of 

stationary waiting times in -node tandem systems 

with constant processing times. We assume that pulling 

a job between nodes follows a communication blocking 

policy (blocking before service).

2. Explicit Expression for Moments 
of Waiting Time

A DBR controlled system consisting of   nodes in 

a series is shown in Figure 1. Let   (  …) be 

a processing time at node  and ≥   be a common 

buffer capacity. This common buffer is shared by the 

bottleneck node  and all its upstream nodes. As shown 

in Figure 1, a dummy node (node 0) with zero processing 

time (  ) and infinite capacity ( ∞) is inserted 

into the foremost node.

In [5], Baccelli and Schmidt introduced characteristics 

of waiting times in a class of stochastic networks as 

Taylor series expansions with respect to an arrival rate 

. As they assume that the capacity of the first node 

is infinite, inserting a dummy node (node 0) in front of 

node 1 allows for the application of their results to DBR- 

controlled systems. The assumption that the dummy 

node has zero processing time can adequately control 

the movement to node 1 under DBR policy. The series 

expansions have a sequence of random vectors  as 

their elements. In max-plus linear systems, the sequence 

of  can properly capture the dynamic behaviors (the 

influences of blocking policy and/or network structure) 

of systems. For a general max-plus linear stochastic 

system the   component of the random vector  can 

be interpreted as the longest path from the initial node 
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to  node in the corresponding task graph.

Once the explicit expression of a sequence  is 

available, we can compute various characteristics of 

transient and stationary waiting times by inputting this 

expression into the series expansions given in [1, 2, 4, 5]. 

However, because of the difficulty of deriving closed-form 

expressions for stationary waiting times, work in [1, 2, 

4, 5] assumed the -th element of  to be ‘ultimately 

periodic’:


 









   … 

   ≥ 

   (1)

for the constant real numbers ≤ 
 ≤ 

 ≤⋯ 

≤
 ,  and some non-negative integers .

By placing the explicit expressions of 
  satisfying 

structure (1) into the closed-form formulas given by [1, 

Corollary 3.1] and [2, Theorem 2.3], we can compute 

the exact values of higher moment and tail probability 

of stationary waiting times in a max-plus linear system. 

In practice, however, computational times vary on the 

value of .

Let node  be a bottleneck node among   nodes 

and 
 be the maximum processing time up to node , 

that is 
 …. Then the sequence of 

 for a DBR system is given as follows (see [6, 

7]): for node   ,


 





 …
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for ≤∞              (3)

for node ≥  ,


 





 
 for all ≥                  (4)

In computing the exact values of characteristics of 

waiting times, the polynomial ⋯  introduced in 

Corollary 3.1 of [1] and Theorem 2.3 of [2] induce 

computational complexity and difficulty because of the 

need to calculate the values of polynomials ⋯  

recursively. An alternative (simplified) form of the pol-

ynomial ⋯  is shown in Hasenfuss [6] as follows:

…
 






















×……

where  .

To avoid this computational difficulty, we eliminate 

the polynomial terms that resulted. The following theorem 

shows the explicit expression for moments of stationary 

waiting times in a DBR line production system with 

constant processing times. The proof is provided in the 

next section.

Theorem 1: Let  be a constant service time at node 

,   …  and  be an input rate of a stationary 

Poisson process such that ∊ 
  where 

 

…. Suppose that the sequence of  

satisfies the structure (1). Then moments of stationary 

waiting times at node  in a DBR line production 

system can be computed from: for  ≥ , 
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with the convention that the summation over an 

empty set is 0, and for   ,

 








where   
,   

 
 , 

≡


 
 

 
, 

≡






  


 


 and  is 

the stationary waiting time in an  queue with 

service time equaling 
 and arrival rate .

3. Proof of Theorem 1

The following proof is the same as the proof given 

in [8]. In [8], explicit expressions are introduced for 

moments and tail probability of stationary waiting 

times in two-node tandem queues with blocking where 

the second node’s buffer capacity is finite while the first 

node has an infinite buffer. Since the proof provided 

there is still valid for a line production system with   

nodes in a series under DBR policy in which a common 

buffer is completely shared by  nodes (up to the bottle-

neck node), we are able to adopt the same procedure.

The proof is based on previous results shown in 

Corollary 3.1 of [1]. Corollary 3.1 has the following 

expression (6) instead of the last expression in (5) 

within the square bracket. The remaining terms are 

identical to the ones given in Theorem 1 with the 

exception of a few notations. It is clear that 

  
   from (4).




 






 


 ⋯
 

 ⋯ 
(6)

Recall that we are assuming that the sequence of 

 satisfies the structure (1). By letting 
 





 

and 
 





 
  

 
 in (4), we can 

see that 
 , for all , has    when ≥ . Thus it 

is clear that this satisfies the second case of Theorem 

1. When   , on the other hand, there exists a ≥   

such that

⋯≤





 for ≥  . 

For node , the sequence of  can be written with 

respect to  as follows: for ≤   ,
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for ≥  ,


 





 




 







 




  
 



 
 



 (8)

These cases satisfy the first case of Theorem 1 in 

which it is required to calculate the difference of two 

polynomial functions  ⋯  given in (6). These polyno-

mial functions, however, cause computational difficulties. 

In the following proof, we use two useful properties of 

the polynomials introduced in [5, p. 146] to simplify 

the polynomials. As the polynomial  ⋯  has a 1- 

invariant property (see Property 1 in [5, p. 146]), the 

common term 




 in (7) and (8) can be immediately 

dropped. Moreover, the polynomials can be eliminated 

from the alternative expression for the difference of the 

two polynomials given in [4, Theorem 10].

The two ranges in (6), ≤ ≤   and ≤ 

 ≤  , lead to ≤ ≤ ≤  . Hence, 

because of ≤ , we can see that all 
…  are 

functions of 
 (see (7)). By letting   

 


, we can simplify the difference of the two 
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Table 1. The values of 

       

 11 23 36 48 61 123

 12 26 41 55 69 141

 14 31 47 64 81 164

 0 0 0 0 0 0

 0 0 0 0 0 0

Table 2. The values of mean waiting times at each node


   

Mean Simulation Mean Simulation

 0.088587
0.08866

∓3.2142E-04
7.633950

7.5730

∓0.39221

 1.218083
1.2183

∓4.8499E-04
8.783734

8.7233

∓0.39159

 2.928894
2.9294

∓7.9766E-04
10.541521

10.481

∓0.39058

 12.00000
12.002

∓0.02167
52.00000

51.894

∓0.62697

 17.00000
17.002

∓0.02167
57.00000

56.894

∓0.62696

polynomials in (6) as follows:

 ⋯  ⋯ 
 


⋯




⋯


From Property 5 in [5, p. 146], we can obtain the 

following expression (9).





⋯

⋯

 (9)

Then, with the help of Property 1 in [5, p. 146], (9) 

can be simplified into (10).





 ⋯⋯  (10)

Finally, the application of [4, Theorem 10] with 

  to (10) yields the following explicit expression 

(11) without the polynomial terms  ⋯ .





  (11)

where  




 for  ≥ . The proof is 

thus completed.

4. Examples and Simulations

As the explicit expression for higher moments given 

in Corollary 3.1 of [1] involves polynomial terms (see 

(6)), [1, Corollary 3.1] requires significantly more com-

putational time compared to our new expression, Theorem 

1, in which the polynomial terms are eliminated. Another 

advantage of our expression is that the computational 

time using our expression is almost insensitive to the 

system parameters.

In this section, we consider a DBR-controlled 5-node 

line production system with a common buffer capacity. 

As we assume that the sequence of processing times is 

, a bottleneck node is placed at 

node 4. Recall that a dummy node (node 0) is inserted 

at the foremost node with zero processing time and 

infinite capacity.

Table 1 shows the value of   for each node  when 

the input rate  is 0.19 and the buffer capacity varies. 

From Table 1, it is clear that  and  are 0 for all 

 because, in this particular example, the bottleneck 

node is 4. For other cases,   increases exponentially 

along with . As previously mentioned, because the 

polynomial function ⋯  requires us to calculate the 

value of polynomial ⋯  recursively, the large 

value of  generally needs much more computational 

time (see (6)).

Computational time using our proposed expression, 

however, is insensitive to the value of . Table 2 shows 

the values of expected waiting times at each node when 
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the buffer capacity  is 20 and the input rate  varies. 

Compared to the simulation results conducted by 

ARENA 13, we see that all mean values obtained from 

our proposed formula are found within the 95% 

confidence interval.

5. Conclusion

Although we assume constant processing times at all 

nodes, obtaining closed-form expressions of moments 

of stationary waiting times in finite-capacity multi-node 

systems remains difficult. From a computational viewpoint, 

the previous results given in [1, 2, 4, 5] are helpful but 

are limited when applied to larger systems. In this study, 

we introduced an explicit expression for higher moments 

of stationary waiting times in DBR line production systems 

with   nodes. Although we did not demonstrate it here, 

the same approach is applicable for the expression of 

tail probability of stationary waiting times.
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