• Title/Summary/Keyword: 유한요소해석 모델

Search Result 2,222, Processing Time 0.03 seconds

Analysis of Aggregate Base Behavior Using Layered Elastic and Finite Element Methods (다층탄성해석과 유한요소법을 사용한 골재기층의 거동분석)

  • Kim, Sung-Hee
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.195-201
    • /
    • 2009
  • In this paper, the critical strains for pavement design were calculated from both Layered Elastic Program (LEP) and Finite Element Method (FEM) and the case studies which give similar critical responses were compared. Although FEM has been realized as a superior model, LEP is more favorable to pavement design due to its simplicity and thus, the technique to calculate the correct critical responses using LEP is significant. This study showed that KENLAYER can possibly estimate the critical responses close to ones obtained from TTIPAVE, which considers nonlinear cross-anisotropic behavior of unbound base materials, by adjusting the stress point locations.

  • PDF

Acquirement of True Stress-strain Curve Using True Fracture Strain Obtained by Tensile Test and FE Analysis (인장시험과 유한요소해석으로 구한 파단 진변형률을 이용한 진응력-진변형률 선도 획득)

  • Lee, Kyoung-Yoon;Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1054-1064
    • /
    • 2009
  • In this work, we predict a true fracture strain using load-displacement curves from tensile test and finite element analysis (FEA), and suggest a method for acquiring true stress-strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

A Study on Size Optimization for Rocket Motor with a Torispherical Dome (토리구형 돔 형상을 갖는 연소관의 치수 최적화 설계 연구)

  • Choi, Young-Gwi;Shin, Kwang-Bok;Kim, Won-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.567-573
    • /
    • 2010
  • In this study, we evaluated the structural integrity and weight of a rocket motor with a torispherical dome by size optimization. Size optimization was achieved by first-order and sub-problem methods, using the Ansys Parametric Design Language (APDL). For rapid design verification, a modified 2D axisymmetric finite-element model was used, and the bolt pre-tension load was expressed as function of the ratio of the cross-sectional area. The thickness of the dome and the cylindrical part of the rocket motor were selected as the design parameters. Our results showed that the weight and structural integrity of the rocket motor at the initial design stage could be determined more rapidly and accurately with the modified 2D axisymmetric finite-element model than with the 3D finite-element model; further, the weight of the rocket motor could be saved to maximum of 17.6% within safety limit.

Wheel Load Distribution Factor for Girder Moment and Shear Force of Skew Plate Girder Bridges (판형사교 거더의 휨모멘트와 전단력에 대한 하중분배계수)

  • Seo, Chang-Bum;Song, Jae-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.33-43
    • /
    • 2005
  • The girder wheel load distribution factors stated in the Korean Bridge Specification and AASHTO Standard Specifications do not account for the effect of skewness of plate girders, and very little research has been conducted on girder wheel load distribution factors. The purpose of the study is to propose load distribution factor formulas for skew plate girder bridges which comprise various parameters through structural analysis. To confirm the validity of finite element models used in this study analytic values are compared with the field test results. From the results it should be noted that span length is not such a dominant parameter compared with others. In view of better load distribution of interior girders, skew arranged cross beams or bracing are preferable, furthemore bracing system is more effective than cross beam system. By means of regression analysis on the basis of analytic results wheel load distribution factor formulas are proposed and compared with current codes.

Delamination Analysis of Orthotropic Laminated Plates Using Moving Nodal Modes (이동절점모드를 사용한 직교이방성 적층평판의 층간분리해석)

  • Ahn, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.293-300
    • /
    • 2012
  • In this study, the delamination analysis has been implemented to investigate the initiation and propagation of crack in composite laminates composed of orthotropic materials. A simple modeling was achieved by moving nodal technique without re-meshing work when crack propagation occurred. This paper aims at achieving two specific objectives. The first is to suggest a very simple modeling scheme compared with those applied to conventional h-FEM based models. To verify the performance of the proposed model, analysis of double cantilever beams with composite materials was implemented and then the results were compared with reference values in literatures. The second one is to investigate the behavior of interior delamination problems using the proposed model. To complete these objectives, the full-discrete-layer model based on Lobatto shape functions was considered and energy release rates were calculated using three-dimensional VCCT(virtual crack closure technique) based on linear elastic fracture mechanics.

FEA for RC Beams Partially Flexural Reinforced with CFRP Sheets (CFRP 시트로 부분 휨 보강된 철근콘크리트 보의 유한요소해석)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Byeong Cheol;Kim, Jaehwan;Jung, Kyu-San
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2020
  • A CFRP sheet has been applied as a structural reinforcement in the field, and various studies are conducted to evaluate the effect of CFRP sheets on reinforced concrete. Although many experiments were performed from previous studies, there are still limitations to analyze structural behaviors with various parameters in experiments directly. This study shows the FEA on structural behaviors of RC beams reinforced with CFRP sheets using ABAQUS software. To simulate debonding failure of CFRP sheets which is a major failure mode of RC beam with CFRP sheets, a cohesive element was applied between the bottom surface of RC beam and CFRP sheets. Both quasi-static method and 2-D symmetric FE model technique were performed to solve nonlinear problems. Results obtained from the FE models show good agreements with experimental results. It was found that reinforcement level of CFRP sheets is closely related to structural behavior of reinforced concrete including maximum strength, initial stiffness and deflection at failure. Also, as over-reinforcement of CFRP sheets could give rise to the brittle failure of RCstructure using CFRP sheets, an appropriate measure should be required when installing CFRP sheets in the structure.

Spline FEM for Trimmed NURBS Surfaces (트림영역이 있는 NURBS 평면의 스플라인 유한요소해석)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.63-66
    • /
    • 2009
  • 본 논문에서는 트림영역이 있는 NURBS 평면을 등기하 해석할 수 있는 방법을 제시한다. 기존 등기하 해석법으로 트림 NURBS 곡면을 해석하기 위해서는 해석 도메인이 여러 개의 사각형 패치로 분할되어있어야 한다. 그러나 본 연구에서 제안한 방법은 CAD에서 제공하는 트림곡선의 정보를 해석에 직접 사용할 수 있기 때문에 CAD 모델을 별도로 재구성해야하는 번거로움이 없다. NURBS 곡선 투영법을 이용하여 트림되는 요소를 찾고, 트림된 요소는 쿼드트리 분할법과 NEFEM에서 사용된 적분방법을 동시에 고려하면 어떤 경우의 트림 요소라도 적분이 가능하다. 다양한 수치 예제를 통하여 제안한 해석 방법을 검증하고, 기존의 등기하해석법으로 해석하기 어려운 다수의 트림영역이 존재하는 NURBS 평면을 해석하여 본 방법의 유용성을 검토한다.

  • PDF

Direct Design Sensitivity Analysis of Frequency Response Function Using Krylov Subspace Based Model Order Reduction (Krylov 부공간 모델차수축소법을 이용한 주파수응답함수의 직접 설계민감도 해석)

  • Han, Jeong-Sam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.153-163
    • /
    • 2010
  • In this paper a frequency response analysis using Krylov subspace-based model reduction and its design sensitivity analysis with respect to design variables are presented. Since the frequency response and its design sensitivity information are necessary for a gradient-based optimization, problems of high computational cost and resource may occur in the case that frequency response of a large sized finite element model is involved in the optimization iterations. In the suggested method model order reduction of finite element models are used to calculate both frequency response and frequency response sensitivity, therefore one can maximize the speed of numerical computation for the frequency response and its design sensitivity. As numerical examples, a semi-monocoque shell and an array-type $4{\times}4$ MEMS resonator are adopted to show the accuracy and efficiency of the suggested approach in calculating the FRF and its design sensitivity. The frequency response sensitivity through the model reduction shows a great time reduction in numerical computation and a good agreement with that from the initial full finite element model.

Behavior of Tunnel Face Reinforced with Horzontal Pipes (수평보강재로 보강된 터널 막장의 거동)

  • 유충식;신현강
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.2 no.1
    • /
    • pp.130-138
    • /
    • 2000
  • 본 연구에서는 수평보강재로 보강된 터널 막장의 거동에 관한 매개변수 연구결과를 다루었다. 매개변수 연구에서는 막장주변의 3차원 응력-변형율 거동을 보다 효율적으로 모델링하기 위해 3차원 유한요소해석 모형을 적용하였으며 보강패턴에 따른 막장의 거동을 고찰하기 위해 다양한 경계조건에 대한 해석을 수행하였다. 해석결과를 토대로 막장의 응력해방-변위거동의 관계를 고찰하였으며, 보강패턴과 막장 변위의 정성${\cdot}$정량적인 관계를 제시함과 아울러서 향후 수행될 반경험적 설계/해석법의 개발을 위한 데이터베이스를 구축하였다. 한편, 해석결과 보강재 타설수 및 길이 등 각 보강설계 인자에 대한 임계치가 존재하는 것으로 나타났으며 따라서 보다 안전하고 경제적인 설계를 위해서는 이를 고려하여야 할 것으로 판단된다.

  • PDF

Seismic Performance Evaluation of Base-Isolated Multi-Story Piping System (지진격리된 복층구조 파이핑 시스템의 내진성능평가)

  • Jeon, Jun-Tai;Ryu, Yong-Hee;Ju, Bu-Seog
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.311-313
    • /
    • 2016
  • 본 연구는 지진격리장치가 적용된 파이핑 시스템에서 빌딩과 같은 구조요소의 상호작용에 의한 동적 거동을 분석하고자 기존 복층구조 파이핑 시스템과 빌딩시스템에 triple friction pendulum이 적용된 격리장치를 적용 하였다. 파이핑 시스템의 시간이력해석에 의한 동적거동 평가를 위해 OpenSees를 이용하여 지진격리된 빌딩 및 파이핑시스템의 수치해석모델을 구축하였으며, 또한 파이핑시스템의 경우 ceiling system and supporting system 등과 같은 요소로 구분하여 유한요소모델을 구축하였다. 결과적으로 지진격리장치가 적용된 빌딩-파이핑 시스템의 경우 각층의 drift 및 변위가 일정한 반면 비 적용된 시스템의 경우 층 가속도에 의한 구조물의 변위가 빌딩층에 따라 상당히 증가함을 볼 수 있다.

  • PDF