• Title/Summary/Keyword: 유연힌지

Search Result 43, Processing Time 0.026 seconds

Design and Analysis of a Lever actuator for the Optical Disk Pickup (광디스크 픽업용 3축 레버 구동기의 설계 및 해석)

  • Han, Chang-Soo;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.41-50
    • /
    • 2002
  • Optical disk system aiming at fast data transfer rate and high-density recording requires the improvement in performance of the pickup head. Especially, the pickup actuator needs better linearity and stability. So, a lever actuator for optical disk is proposed. In this paper, the role of lever and its structure are discussed and the flexure hinge is introduced to enhance the precise movement. Using the Newoton's method, the motion of equation for the lever actuator is obtained. The results are compared with the analysis results by the FEM (Finite Element Method) for the vibration and the magnetic field. Consequently, the lever actuator has the 2"d system characteristics in 3-axis moving directions and superior stability for the external vibration.tion.

Design, Modeling and Analysis of a 3-axis Fine Positioning Stage (초정밀 3축 이송 스테이지의 설계, 모델링 및 해석)

  • 강중옥;서문훈;한창수;홍성욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.989-992
    • /
    • 2002
  • This paper presents a procedure far design, modeling and analysis of a fine positioning stage. The stage considered here is composed of flexure hinges, piezoelectric actuators and their peripherals. Through a series of analysis, the structural analysis model is simplified as a rigid body(the moving part) and springs (the flexure hinges). An experimental design procedure is applied to determine optimum design variables for flexure hinges. The optimum variables are validated through a numerical test. A sensitivity analysis on the notch positions is also performed to obtain a guideline of fabrication accuracy for the stage.

  • PDF

Development of 3-axis fine Positioning Stage : Part 2. Fabrication and Performance Evaluation (초정밀 3축 이송 스테이지의 개발 : 2. 제작 및 성능 평가)

  • Kang, Joong-Ok;Baek, Seok;Han, Chang-Soo;Hong, Sung-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.155-162
    • /
    • 2004
  • This paper presents the fabrication procedure and the experiments for the 3-axis fine positioning stage proposed in[1]. First, the dynamic characteristics of the actuator and the stage are tested with the preload changed in order to validate the stage design specifications. Secondly, the performance of the stage is also evaluated on the accuracy associated with linear positioning, angular error, and straightness error. Experimental results show that the developed stage is accurate enough to be used for nanometer positioning. Through the analysis and experiment, the developed fine positioning stage are found to have a long stroke due to the magnetically preloaded PZT actuators, the minimum motion crosstalk due to the use of a ball contact mechanism and the compact design.

Development of 3-axis Fine Positioning Stage: Part 1. Analysis and Design (초정밀 3축 이송 스테이지의 개발: 1. 해석 및 설계)

  • 강중옥;서문훈;한창수;홍성욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.147-154
    • /
    • 2004
  • This paper presents a procedure for analysis and design of a fine positioning stage, which has many applications in industries for machine tools, semiconductor, LCD and so forth. The stage considered here is based on a single module with 3 axes which is composed of flexures hinges, piezoelectric actuators and their peripherals. Through a series of analysis, the structural analysis model is simplified as a rigid body(the moving part) and springs(the flexures hinges). An experimental design procedure is applied to determine the dimension of flexures hinges. A sensitivity analysis on the notch positions is also performed to obtain a guideline of fabrication accuracy for the stage. An actual fine stage is made and verified through an experiment on the dynamic characteristics.

Assessment of Structural Modeling Refinements on Aeroelastic Stability of Composite Hingeless Rotor Blades (구조 모델링 특성에 따른 복합재료 무힌지 로터의 공력 탄성학적 안정성 연구)

  • Park, Il-Ju;Jung, Sung-Nam;Kim, Chang-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.163-170
    • /
    • 2008
  • The aeroelastic stability analysis of a soft-in-plane, composite hingeless rotor blade in hover and in forward flight has been performed by combining the mixed beam method and the aeroelastic analysis system that is based on a moderate deflection beam approach. The aerodynamic forces and moments acting on the blade are obtained using the Leishman-Beddoes unsteady aerodynamic model. Hamilton's principle is used to derive the governing equations of composite helicopter blades undergoing extension, lag and flap bending, and torsion deflections. The influence of key structural modeling issues on the aeroelastic stability behavior of helicopter blades is studied. The issues include the shell wall thickness, elastic couplings and the correct treatment of constitutive assumptions in the section wall of the blade. It is found that the structural modeling effects are largely dependent on the layup geometries adopted in the section of the blade and these affect on the stability behavior in a large scale.

Influence of Column Base Rigidity on Behavior of Steel Buildings (강구조물 지지부의 강성도가 구조물 거동에 미치는 영향)

  • 권민호;박문호;장준호;박순응
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.165-172
    • /
    • 2002
  • Generally, the steel rigid frame has been analyzed using finite element analysis tools. While many efforts have been poured into the understanding and accurate prediction for the nonlinear behavior of the columns and beam-columns connections, the base of the columns are modeled as simply hinged or fixed. However, the base of the steel columns practically is neither fixed not hinged. It behaves as semi-rigid. In this paper, the supports of the columns we modeled as semi-rigid and the importance of such approach in moment-resisting columns is evaluated. Two typical buildings designed by the US specification are modeled and analyzed by the finite element based on stiffness method and flexibility method. The column bases of three-story buildings are modeled as rotational springs with a varying degree of stiffness and strength that simulates the semi-rigidity of the base. Depending on the degree of stiffness and strength, the semi-rigidity varies from the hinged to the fixed. Buildings with semi-rigid column bases behaves similarly to the building with fixed bases. It has been numerically observed through the pushover and nonlinear time history analyses that the decrease of the stiffness of the column base induces the rotational demand on the int air beams. an increase of rotation demands on the first store connections and lead to a soft-story mechanists Due often to the construction and environmental effects, undesired reduction of column base stiffness may cause an increase of rotation demands on the first store connections and lead to a soft-story mechanism.

Fatigue Safe Life Analysis of Helicopter Rotor Bearingless Hub System Composite Components (헬리콥터 로터 무베어링 허브 시스템 복합재 구성품 피로 안전수명 해석)

  • Kim, Taejoo;Kee, Youngjoong;Kim, Deog-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.10-19
    • /
    • 2014
  • We designed bearingless rotor hub system which replace mechanical hinge/bearing with composite beam component and conducted fatigue analysis for flexbeam and torque tube. Extension/bending/torsional stiffness was calculated from 2D section analysis using VABS and 2D section structure analysis was applied for strain calculation. S-N curve of each composite material was generated using Wohler equation and fatigue analysis was conducted on weakness section which was decided from static structure analysis. CAMRAD II was used for load analysis and load analysis result was applied HELIX/FELIX standard load spectrum to generate bearingless rotor system load spectrum which was used fatigue safe life analysis.

Development of a High speed Actuator for electric performance testing System of ceramic chips (세라믹칩 전기적 성능검사 시스템을 위한 고속구동 액튜에이터 개발)

  • Bae, Jin-Ho;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1509-1514
    • /
    • 2011
  • The core of IT products, electronic components, especially the MLCC, chip inductors, chip Varistors and so on. In order to test the electrical characteristics of the chip using the Reno-pin contact test method has been used. In current chips, mass production of semiconductor manufacturing processes, high-speed production test for the chip speed up, precision is required. But Vibration displacement is a very short, so in order to overcome these shortcomings, the displacement amplification to design the structure has been actively studied. In this paper, a building structure with a flexible hinge was designed amplification instrument, semiconductor chip industry in the performance test and inspection equipment to measure the electrical characteristics of high speed linear actuators Reno-Pin using system was developed.

Experiment of the Precision micro-positioning stage (초정밀 마이크로 위치결정 스테이지의 제작 및 평가)

  • Han, C. S.;Paek, S.;No, M. K.;Lee, C. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.244-247
    • /
    • 2002
  • The performance of the precision micro-positioning 4-dof stage is presented. The compact design utilizes the monolithic mechanism to achieve the translation in the Z axis and rotation in the $\theta$ z, $\theta$ x and $\theta$ y axes with high stiffness and high damping. Hysteresis, nonlinearity, and drift of the piezoelectric effects are improved by incorporating the sensors in a feedback control. Experiments demonstrate that the micro-positioning stage is capable of 2nm resolution over the travel range of 25$\mu\textrm$ m in the Z axis, 0.0l7 $\mu\textrm$ rad resolution over the 170$\mu\textrm$ rad in the $\theta$ z and 0.011 $\mu\textrm$ rad resolution over the $\mu\textrm$ rad in the $\theta$ x and $\theta$ y axes. The cross-axis interferences among the axes are at a noise range. This stage is available for positioning error compensation of the XY stage with large stroke.

  • PDF

A Study on Adaptive Design of Mechanical Part for Smooth Lift (유연 승강기용 부품의 적용 설계에 관한 연구)

  • 최성대;정선환;조규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1454-1457
    • /
    • 2003
  • This study was carried out to minimize the lifting force of a two hinge type stand mechanism. This unit is designed for the display devices in order to enhance the ergonomics for effective height adjustment and maintenance at any preferred position. The unit will be very useful for the mechanism fabricated with a coil spring and disc springs as a torque generator. The maximum and the minimum torque value should be calculated initially for the smooth lift. And the reasonable torque distribution is necessary to prevent any AUTO LIFT and AUTO Drooping at any position because the torque generated by coil spring is more sensitive than disc spring in tilting the position. Therefore, the analysis of the coil spring is requisite to issue the specific torque value depending on the distorted angle with securing reliability of a long time storage condition. After the theoretical torque value was calculated, the evaluation was carried out by making a proto-type sample, then distorted angle was updated by experiment. The result of this study can readily be applied to various units for the optimization of the smooth lift.

  • PDF