• Title/Summary/Keyword: 유연한 물체

Search Result 146, Processing Time 0.032 seconds

Multi-flexible Body Dynamic Analysis of a Heavy Trailer Vehicle Passing a Bump (대형 트레일러 차량의 범프 통과 시 유연다물체 동역학 해석)

  • Kim, J.Y.;Kim, H.S.;Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.40-45
    • /
    • 2009
  • This article deals with the transient analysis using multi-flexible body dynamics of a trailer vehicle, which is passing a bump on the flat road. In order to investigate the transient dynamic behavior of the trailer, we developed an equivalent finite element model for the trailer and a vehicle dynamic model for the truck using multi-body dynamics. The driving condition considered here is set as the trailer vehicle passes a bump on the flat road in 7km/h. And we investigate the time histories of vertical load and deflections on connecting points between the trailer and truck during the vehicle passes a bump. Due to the dynamic load resulted from the driving condition, additional stress concentrations are found in the trailer and the suspension connecting points between the trailer and rear axles along with kingpin.

  • PDF

Analysis and Control of the Flexible Multibody System Using MATLAB (MATLAB을 이용한 유연 다물체 시스템의 해석 및 제어)

  • Jung, Sung-Pil;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.437-443
    • /
    • 2008
  • In this paper, analysis and control of the flexible multibody system using MATLAB is presented. The equations of motion of a flexible body are derived in terms of the modal coordinate. The rigid-flexible multibody dynamic solver is developed. Finite element information required to analyze motion of flexible bodies is imported from ANSYS. The modified finite element data, such as modal mass matrix, modal stiffness matrix and constraint mode shapes, is calculated in the solver. Since the solver is developed using MATLAB, it is very easy to connect with SIMULINK which is widely used to control motion of the multibody system. Several simulations are implemented to verify the developed solver. A control example is carried out and the usefulness of the developed solver is demonstrated.

Dynamic Stress Analysis of Flexible Multibody using DADS (DADS를 이용한 유연 다물체의 동응력 해석)

  • Ahn, K.W.;Seo, K.H.;Hwang, W.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.107-112
    • /
    • 1998
  • A great deal of time and effort are required to evaluate the safety and durability of a vehicle structure in the vehicle development stage. It is difficult to find the reasons for cracks which occur in the body and frame of a vehicle during tests. Recently computer aided engineering techniques have been utilized to solve the problems of safety and durability of vehicles. In this study, a dynamic stress analysis is performed on the frame of the vehicle by rigid and flexible multibody dynamics techniques. The result of the analysis is compared to that of the actual test. The full vehicle dynamic models for the rigid and flexible bodies are developed by DADS package. The modal coordinate system is used to save time for the dynamic stress analysis. The flexible multibody dynamic models have 12 normal modes considering the flexibility of the frame. Dynamic stresses arc calculated by relating the stress influence coefficients and the applied forces.

  • PDF

Effects of Suspension Compliance and Chassis Flexibility in Handling Performance (현가장치의 유연성과 차체의 탄성효과가 조종안정성에 미치는 영향 분석)

  • Kang, Dong-Kwon;Yoo, Wan-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.137-143
    • /
    • 1997
  • In this study, handling simulation of a passenger car is carried out to see the effects of suspension compliance, roll stabilizef bar and chassis flexibility. The front suspension of the car is a MacPherson strut type and the rear suspension is a multi-link type. The following five DADS models are constructed and compared to verify the effects of suspension compliance and chassis flexibility during lane change. (1) Vdhicle model without hard point compliance and stabilizer, (2) Vehicle model with hard point compoiance, (3) Vehicle model with hard point compliance and stabilizer, (4) Vehicle model with hard point compoiance, stabilizer, and one vibration mode of the chaxxis. (5) Vehicle model with hard point compliance, stabilizer, and three vibration modes of the chassis. The result shows that hard point compliance and stabilizer are significant in roll angle, and the flexibility of the chassis affects the yaw angle and yaw rate.

  • PDF

Dynamic Analysis of a Very Flexible Cable Carrying A Moving Multibody System (다물체 시스템이 이동하는 유연한 케이블의 동역학 해석에 관한 연구)

  • 서종휘;정일호;한형석;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.150-156
    • /
    • 2004
  • In this paper, the dynamic behavior of a very flexible cable due to moving multibody system along its length is presented. The very deformable motion of a cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. Formulation for the sliding joint between a very flexible beam and a rigid body is derived. In order to formulate the constraint equations of this joint, a non-generalized coordinate, which has no inertia or forces associated with this coordinate, is used. The modeling of this sliding joint is very important to many mechanical applications such as the ski lifts. cable cars, and pulley systems. A multibody system moves along an elastic cable using this sliding joint. A numerical example is shownusing the developed analysis program for flexible multibody systems that include a large deformable cable.

Optimum Stiffness of the Sleeper Pad on an Open-Deck Steel Railway Bridge using Flexible Multibody Dynamic Analysis (유연다물체동적해석을 이용한 무도상교량 침목패드의 최적 강성 산정)

  • Chae, Sooho;Kim, Minsu;Back, In-Chul;Choi, Sanghyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2022
  • Installing Continuous Welded Rail (CWR) is one of the economical ways to resolve the challenges of noise, vibration, and the open-deck steel railway bridge impact, and the SSF method using the interlocking sleeper fastener has recently been developed. In this study, the method employed for determining the optimum vertical stiffness of the sleeper pad installed under the bridge sleeper, which is utilized to adjust the rail height and absorb shock when the train passes when the interlocking sleeper fastener is applied, is presented. To determine the optimal vertical stiffness of the sleeper pad, related existing design codes are reviewed, and, running safety, ride comfort, track safety, and bridge vibration according to the change in the vertical stiffness of the sleeper pad are estimated via flexible multi-body dynamic analysis,. The flexible multi-body dynamic analysis is performed using commercial programs ABAQUS and VI-Rail. The numerical analysis is conducted using the bridge model for a 30m-long plate girder bridge, and the response is calculated when passing ITX Saemaeul and KTX vehicles and freight wagon when the vertical stiffness of the sleeper pad is altered from 7.5 kN/mm to 240 kN/mm. The optimum stiffness of the sleeper pad is calculated as 200 kN/mm under the conditions of the track components applied to the numerical analysis.

Implementation of a plane-sweep algorithm for generalized polygons (일반화 다각형을 위한 plane-sweep 알고리즘의 구현)

  • 안진영;유견아
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.691-693
    • /
    • 2002
  • 일반화 다각형(generalized polygons)이란 선분과 호로 둘러싸인 $R^2$영역으로 정의되는 확장된 다각형 개념으로 로보틱스 등의 응용 분야에서 다루는 중요한 도형군이다. 로보틱스에 응용되는 컴퓨터 기하학 알고리즘의 대부분은 선분이나 다각형을 다루도록 개발되어 있어 로봇 작업환경의 다양한 물체들을 선분만으로 모델링해야만 알고리즘의 적용이 가능하다. 기존의 알고리즘들을 일반화 다각형을 다룰 수 있도록 확대한다면 보다 유연한 모델링을 가능하게 할 것이다. 주 논문에서는 컴퓨터 기하학분야의 대표적인 알고리즘인 plane-sweep 알고리즘을 일반화 다각형을 다룰 수 있도록 수정하고 구현한다. 이를 로보틱스이 응용분야중 하나인 고정쇠 문제(fixturing)에 적용한다.

  • PDF