• Title/Summary/Keyword: 유압 관로

Search Result 113, Processing Time 0.023 seconds

Propagation Characteristics of Pressure Pulse of Unsteady Flow in n Hydraulic Pipeline (유압관로에서 비정상유동의 압력전파특성)

  • Yu, Yeong-Tae;Na, Gi-Dae;Kim, Ji-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • Flow of fluid has been studied in various fields of fluid engineering. To hydraulic engineers, the unsteady flow such as pulsation and liquid hammering in pipes has been considered as a serious trouble. So we are supposed to approach the formalized mathematical model by using more exact momentum equation for fluid transmission lines. Most of recent studies fur pipe line have been studied without considerations of variation of viscosity and temperature, which are the main factors of pressure loss causing the friction of fluid inside pipe line. Frequency response experiments are carried out with use of a rotary sinusoidal flow generator to investigate wave equation take into account viscosity and temperature. But we observed that measured value of gains are reduced as temperature increased. And it was respectively observed that the measured value of gains are reduced and line width of gain is broadened out, when temperature was high in the same condition. As we confessed, pressure loss and phase delay are closely related with the length, diameter and temperature of pipe line. In addition, they are the most important factors, when we decide the momentum energy of working fluid.

Characteristics Evaluation of Spindle Thermal Displacement with kinds of Lubrication Oil (AMESim를 이용한 유압 굴삭기용 Main Control Valve의 해석에 관한 연구)

  • 임태형;최종환;양순용;이병룡;안경관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.105-110
    • /
    • 2003
  • The hydraulic excavator has been a popular research object for automation because of its multi-workings and economic efficiency. When it works crane tasks, most of disasters happen. The objective of this paper is to design each components and to construct boom, arm, bucket circuit. These models modeled with AMESim show us change of variables and behavior of excavator. Simulation model will be used for simulator of excavator.

  • PDF

Fatigue test machine development using hydraulic servo control (유압 서보제어를 이용한 내구성 시험기 개발)

  • Park, Myung-Kwan;Kim, Jin-Hak;Suh, Il-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2741-2743
    • /
    • 2000
  • 내구시험기의 기본적인 구조를 해석하고 분석하여 각종 기구부의 내구성 시험에서 적용대상물에 관계없이 전기유압서보장치의 용량과 적합한 센서들을 조합하여 구성 가능하도록 시험기를 구성하였으며, 본 연구에서 개발된 제어장치와 데이터 수집 소프트웨어는 내구시험 대상물에 관계없이 범용 적으로 사용할 수 있도록 개발하였다.

  • PDF

A Study on Fluid Thansient Accommpanying Cilumn Separation in Oil Hydraulic Pipeline -Investigation on Two-Step Pressure Rise (유압 관로계에서 액주분리를 수반하는 유체과도현상에 관한 연구 -2단입력 상승현상에 관하여-)

  • 염만오;이진걸;이일영;김현기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.984-991
    • /
    • 1988
  • Liquid column separation occurs when the valve on the pipeline is closed rapidly in an oil hydraulic system. In this case two-step pressure rise is sometimes observed in a comparatively short pipeline. In this study the two-step pressure rise phenomenon was investigated experimentally and theoretically. The experiments showed that maximum pressure values during two-step pressure rise might exceed extremely the values computed by the theory of rigid-liquid-column separation. So the two-step pressure rise phenomenon appears one of important factors of pipe strength design. From the theoretical considerations based on the experimental and numerical results, the mechanism of two-step pressure rise phenomenon could be explained clearly.

Cavitation Inception in Oil Hydraulic Pipeline (유압관로에서의 캐비테이션 초생)

  • 정용길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.127-130
    • /
    • 1987
  • The Cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below -1 MPa (absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. The growth of a spherical bubble in a infinite volume of viscous compressible fluid due to a stepwise pressure drop was investigated to obtain the critical bubble radius. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised condition about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.

  • PDF

Analysis of Dynamic Characteristics of Hydraulic Transmission Lines with Distributed Parameter Model (분포정수계 유압관로 모델의 동특성 해석)

  • Kim, Do Tae
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.67-73
    • /
    • 2018
  • The paper deals with an approach to time domain simulation for closed end at the downstream of pipe, hydraulic lines terminating into a tank and series lines with change of cross sectional area. Time domain simulation of a fluid power systems containing hydraulic lines is very complex and difficult if the transfer functions consist of hyperbolic Bessel functions which is the case for the distributed parameter dissipative model. In this paper, the magnitudes and phases of the complex transfer functions of hydraulic lines are calculated, and the MATLAB Toolbox is used to formulate a rational polynomial approximation for these transfer functions in the frequency domain. The approximated transfer functions are accurate over a designated frequency range, and used to analyze the time domain response. This approach is usefully to simulate fluid power systems with hydraulic lines without to approximate the frequency dependent viscous friction.