• Title/Summary/Keyword: 유리 콘크리트

Search Result 414, Processing Time 0.024 seconds

Flexural Behavior of Concrete Beams Reinforced with GFRP Bars (GFRP 보강근을 사용한 콘크리트 보의 휨파괴 거동)

  • Eo, Seok-Hong;Ha, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5318-5326
    • /
    • 2014
  • This paper presents the results of flexural test of concrete beams reinforced with GFRP and conventional steel reinforcement for comparison. The beams were tested under a static load to examine the effects of the reinforcement ratio and compressive strength of concrete on cracking, deflection, ultimate capacity, and modes of failure. The test results showed that the ultimate capacity of the GFRP-reinforced beams increased with increasing reinforcement ratio and concrete strength, showing a 41.3~51.6% increase compared to steel reinforced beams. The deflections at maximum loads of the GFRP reinforced beams were 4.1~6.3 times higher that of steel reinforced beams. The measured deflections of GFRP reinforced beams decreased approximately 31% compared to the theoretical predictions because the theoretical flexural stiffness was underestimated at the maximum loads. For the GFRP-reinforced beams, the ACI code 440 design method resulted in conservative flexural strength estimates.

Engineering Properties of Concrete Enhanced with Rice Husk Ash and Polypropylene Fiber (폴리프로필렌 섬유 보강 RHA콘크리트의 공학적 특성)

  • Lee, Yun;Park, Ki-Tae;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.3
    • /
    • pp.427-437
    • /
    • 2015
  • Concrete, as a construction material, needs suitable reinforcement for tensile region due to weak tensile strength. Many researches on cement reduction have been attempted for $CO_2$ emissions during cement clinker production. In this paper engineering properties of concrete enhanced with polypropylene fiber (PPF) and rice husk ash (RHA) are evaluated. Fiber volume ratios of 0.125~0.375 and RHA replacement ratio of 0~20% are considered for concrete mixture. Lots of test including compressive, split, flexural and the related crack width, impact energy, and pull out test are performed and the results are evaluated considering the fiber ratios, fiber length and RHA replacement. Fiber and RHA ratios have dominant effects on tensile and compressive characteristics respectively, and the concrete with 0.125% of PPF and 10% of RHA shows the most effective enhancement for engineering properties. Appropriate addition of RHA and PPF are very effective both for engineering property enhancement and clean technology.

Expansion Properties of Mortar Using Waste Glass and Industrial By-Products (폐유리와 산업부산물을 사용한 모르터의 팽창특성)

  • 박승범;이봉춘
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.440-448
    • /
    • 2002
  • Waste glass has been increased with the development of industry. The utilization of waste glass for concrete can cause the concrete to be cracked and to be weakened due to an expansion by alkali-silica reaction(ASR). In this study, ASR expansion and properties of strength were analyzed in terms of waste glass color(amber, emerald-green), industrial by-products(ground granulated blast-furnace slag, fly ash), and the content of industrial by-products for reducing ASR expansion caused by the waste glass. The possibility of using glass ground as pozzolanic properties was also analyzed. From the result of this study, the pessimum size of waste glass was 2.5∼1.2 mm regardless of waste glass color. And the smaller than 2.5∼1.2 mm waste glass is, the more decreasing expansion of ASR is. Also, the combination of waste glass with industrial by-products have an effect on reducing the expansion and strength loss caused by ASR between the alkali in the cement paste and the silica in the waste glass, and the glass ground of less than 0.075 mm is applicable as a pozzolanic material.

Field Instrumentation of Load of R/C Apartment under Construction according to Construction Stage (시공단계에 따른 RC공동주택의 동바리 하중 계측)

  • Oh, Jae-Keun;Kang, Su-Min;Kim, Ook-Jong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.117-120
    • /
    • 2008
  • Recently, according to the increasement of high-rise building construction and domestic situation, requirements of rapid cycle construction are increasing. For more economical and rapid cycle construction, it is required to reduce formwork cost. So formwork have to be stripped as soon as possible. But as fresh concrete is loaded with construction load, it is likely that the structure will have problems with safety and serviceability. To reduce construction cycle economically, safety and serviceability of structure against construction load have to be considered. But as behavior of structure under construction is so complicated, behavior of structure has to be investigated according to construction stage. Therefore, through field instrumentation of apartment, behavior of structure under construction was analyzed.

  • PDF

Size Effect of Concrete Structures without Initial Cracks (초기균열이 없는 콘크리트 구조물의 크기에 따른 응력감소효과에 관한 연구)

  • Kim, Jin Keun;Park, Hong Kyee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.29-36
    • /
    • 1987
  • In most of the structural members with initial cracks, the strength tends to decrease as the member size increases. This phenomenon is known as size effect. Among the structural materials of glass, metal or concrete, etc., concrete represents the size effect even without initial crack. According to the previous size effect law, the concrete member of very large size can resist little stress. Actually, however, even the large size member can resist some stress if there is no initial notch. This means that the fracture mechanism of very small or very large size member follows strength criterion, but the medium size member follows non-linear fracture mechanics (NLFM). In this study, the empirical models which are derived based on nonlinear fracture mechanics are proposed according to the regression analysis with the existing test data of large size specimens for uni-axial compression test, splitting tensile test and shear test of reinforced concrete beams.

  • PDF

Experimental Study on Physical and Mechanical Properties of Concrete with fine Waste Glass (잔골재로 폐유리를 혼입한 콘크리트의 물리.역학적 특성에 관한 실험적 연구)

  • 박승범;조청휘;김정환
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.184-191
    • /
    • 2001
  • Recently, as industrialization is rapidly growing and the standard of life is rising, the quantities of waste glasses have been hastily increased and most of them are not recycled but abandoned. It cause some problems such as the waste of natural resources and environmental pollution. Therefore, this study was conducted basic experimental research to analyze the possibilities of recycling of waste glasses(crushed waste glasses outbreaking from our country such as amber, emerald-green, flint and mixed) as fine aggregates for concrete. Test results of fresh concrete, slump and compacting factors decrease because grain shape is angular and air content increase due to involving small size particles so much in waste glasses. Also compressive, tensile and flexural strengths decrease with increase of the content of waste glasses. In conclusion, the content of waste glasses below 30% is reasonable and usage of pertinent admixture is necessary to obtain workability and air content.

Strength Properties of High-Strength Concrete Piles Using an Industrial by-Product (산업부산물을 치환한 고강도 콘크리트 말뚝의 강도 특성)

  • Shin, Kyoung-Su;Lim, Byung-Hoon;Hwang, Sun-Kyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.85-91
    • /
    • 2020
  • The necessity for ground reinforcement of structures has been increasing in South Korea because buildings have encountered constructional problems such as inclined structures and collapses caused by earthquakes or differential settlement of the foundations. With regard to a ground reinforcement method, an increasing number of high-strength concrete piles have been used based on their advantages, including a wide range of penetration depth and a high load-bearing capacity. However, problems such as the destruction of a pile head during on-site placement work can occur when the pile has insufficient strength. For this reason, the strength of such piles should be managed more thoroughly. Thus, this study analyzed the strength properties of high-strength concrete piles using blast furnace slag (BFS) powder as a cement replacement, which was generated as an industrial byproduct. The analysis results indicated that the compression strength of the concrete piles increased when 10% to 20% of the cement was replaced with ground granulated blast-furnace slag (GGBS). In addition, the compression strength of the concrete piles was calculated to be 80.6 MPa when 20% of the cement was replaced with GGBS, which was greater by 5% than that of an ordinary Portland cement (OPC) specimen.

Service and Ultimate Load Behavior of Bridge Deck Reinforced with GFRP Rebars (GFRP 보강근으로 보강된 교량 바닥판의 성능과 사용성에 관한 실험연구)

  • Yu, Young Jun;Park, Young Hwan;Park, Ji Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.719-727
    • /
    • 2008
  • The tensile and bond performance of GFRP rebar are different from those of conventional steel reinforcement. It requires some studies on concrete members reinforced with GFRP reinforcing bars to apply it to concrete structures. GFRP has some advantages such as high specific strength, low weight, non-corrosive nature, and disadvantage of larger deflection due to the lower modulus of elasticity than that of steel. Bridge deck is a preferred structure to apply FRP rebars due to the increase of flexural capacity by arching action. This paper focuses on the behavior of concrete bridge deck reinforced with newly developed GFRP rebars. A total of three real size bridge deck specimens were made and tested. Main variables are the type of reinforcing bar and reinforcement ratio. Static test was performed with the load of DB-24 level until failure. Test results were compared and analyzed with ultimate load, deflection behavior, crack pattern and width.

Appraisal of Concrete Performance and Plan for Stable Use of EAF Oxidizing Slag as Fine Aggregate of Concrete (전기로 산화슬래그 잔골재를 사용한 콘크리트의 성능 평가)

  • Cho, Bong-Suk;Lee, Hoon-Ha;Yang, Seung-Kyu;Lee, Woong-Jong;Um, Tai-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.367-375
    • /
    • 2009
  • Recently, more focus is shift to imbalances in aggregate market supply and demand and an exhaustion of natural resources. In this situation, Electric arc furnace oxidizing slag (EAF slag) has high application possibility as aggregate for concrete due to similar property with general aggregate. However, it is inherent the problem which causes pop-out by free-CaO contained in slag In this study, we've got the plan to assure the chemical stability of EAF slag, and then experimentally tested the mechanical performance and durability for the fine aggregate used EAF slag. On this test result, we suggest the application plan. At the result of this study, it shows that EAF slag would reduce the surface defect such as pop-out due to natural aging for the fixed hour and adjustment the grain size of EAF slag. And mechanical performance and durability according to the replacement rate of concrete service, were revealed more than equal or equal compare to general aggregate. Hereafter, quality control must precede not to impede the beauty of concrete surface as assure the safety for aging and processing. And, to establish the environmental resource recycling system for by-products of steel, it should be made development of various application and guideline of quality control for the EAF slag aggregate. Moreover, it must be constantly studied all kind of engineering performance and durability for related to this study.

Evaluation of Flexural Performance of Eco-Friendly Alkali-Activated Slag Fiber Reinforced Concrete Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 알카리활성 슬래그 섬유보강콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2015
  • In this study, it was developed eco-friendly alkali-activated slag fiber reinforced concrete using ground granulated blast furnace slag, alkali activator (water glass, sodium hydroxides), and steel fiber. Eight reinforced concrete beam using alkali-activated slag concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, mixed/without of steel fiber. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The reinforced concrete beams using the eco-friendly alkali-activated slag fiber reinforced concrete was failed by the flexure or flexure-shear in general. In addition, the maximum strength increased with the adding the mol of sodium hydroxide, and the specimen reinforced the steel fiber showed the value of maximum strength which is increased by 15.8% through 25.9%. It is thought that eco-friendly alkali-activated slag fiber reinforced concrete can be used with construction material and product to replace normal concrete. If there is applied to structures such as precast concrete member and production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.