DOI QR코드

DOI QR Code

Service and Ultimate Load Behavior of Bridge Deck Reinforced with GFRP Rebars

GFRP 보강근으로 보강된 교량 바닥판의 성능과 사용성에 관한 실험연구

  • 유영준 (한국건설기술연구원 복합구조연구실) ;
  • 박영환 (한국건설기술연구원 구조시스템연구실) ;
  • 박지선 (한국건설기술연구원 건축구조재료연구실)
  • Received : 2007.12.04
  • Accepted : 2008.07.28
  • Published : 2008.09.30

Abstract

The tensile and bond performance of GFRP rebar are different from those of conventional steel reinforcement. It requires some studies on concrete members reinforced with GFRP reinforcing bars to apply it to concrete structures. GFRP has some advantages such as high specific strength, low weight, non-corrosive nature, and disadvantage of larger deflection due to the lower modulus of elasticity than that of steel. Bridge deck is a preferred structure to apply FRP rebars due to the increase of flexural capacity by arching action. This paper focuses on the behavior of concrete bridge deck reinforced with newly developed GFRP rebars. A total of three real size bridge deck specimens were made and tested. Main variables are the type of reinforcing bar and reinforcement ratio. Static test was performed with the load of DB-24 level until failure. Test results were compared and analyzed with ultimate load, deflection behavior, crack pattern and width.

GFRP 보강근의 인장강도 및 부착성능 등은 철근과 다르기 때문에 GFRP 보강근을 콘크리트 구조물에 적용하기 위해서는 GFRP 보강근으로 보강된 콘크리트 부재의 거동에 관한 연구가 선행되어야 한다. GFRP는 높은 비강도, 경량성, 비부식성 등의 장점을 가지고 있으나 탄성계수가 철근보다 작아 상대적으로 큰 처짐이 발생하는 단점이 있다. 교량 바닥판은 아칭효과 등에 의해 휨성능이 증가하므로 FRP 보강근을 우선 적용할 수 있는 대상 중 하나이다. 본 논문은 국내에서 개발된 철근 대체재용 GFRP 보강근의 콘크리트 구조물로의 적용 가능성을 관찰하기 위한 실험연구에 관한 것이다. 대상 실험체는 폭과 길이가 3,000 mm, 4,000 mm이고 두께가 240 mm인 실제 크기의 콘크리트 바닥판이다. 실험변수는 보강근 종류(철근, GFRP 보강근)와 보강비로 총 3개의 바닥판을 제작하였다. 정적실험을 수행하였으며 DB-24 하중등급의 축하중을 모사한 재하면적을 가진 직사각형 강재로 바닥판이 파괴될 때까지 집중하중을 가하였다. 철근 보강 바닥판과 GFRP 보강 바닥판의 거동차이를 최대성능, 처짐 및 균열 거동 등에 대해 비교 검토하였다.

Keywords

References

  1. 건설교통부(2005) 도로교설계기준, 한국도로교통협회
  2. 한국건설기술연구원(2005) FRP 복합재료 보강재 개발 및 이를 활용한 콘크리트 구조물 건설기술 개발, 3차년 보고서
  3. 유영준, 박지선, 박영환, 김형열, 황금식(2007) GFRP 보강근의 돌기 피치에 따른 성능변화와 대직경 보강근의 성능 평가, 2007 가을학술발표회 논문집, 한국콘크리트학회, Vol. 19, No. 2, pp. 141-144
  4. ACI Committee 440 (2006) Guide for the Design and Construction of Concrete Reinforced with FRP Bar(440.1R-06), American Concrete Institute, Farmington Hills, Mich
  5. Benmokrane, B., El-Salakawy, E. F., Desgagn, G., and Lackey, T. (2004) FRP Bars for Bridges, Concrete International, Vol. 26, No. 8, pp. 84-90
  6. Benmokrane, B., El-Salakawy, E., El-Ragaby A., and Lackey, T. (2006) Designing and Testing of Concrete Bridge Decks Reinforced with Glass FRP Bars, Journal of Bridge Engineering, ASCE, Vol. 11, No. 2, pp.217-229 https://doi.org/10.1061/(ASCE)1084-0702(2006)11:2(217)
  7. CSA S806-02 (2002) Design and construction of building components with fiber reinforced polymers, Toronto (Ont., Canada): Canadian Standards Association
  8. CSA (2006) Canadian Highway Bridge Design Code-CAN/CSA-S6- 06, Toronto (Ont., Canada). Canadian Standards Association
  9. Djamaluddin, R., Hino, S., and Yamaguchi, K. (2004) Innovative approach in manufacturing and application of CFRP rods with U-anchor for concrete structures, Proc. 4th Int. Conf. on Advanced Composite Materials in Bridges and Structures (ACMBS IV), Canadian Society of Civil Engineering (CDCE), Calgary, Canada
  10. El-Gamal, S.E., El-Salakawy, E.F., and Benmokrane, B. (2004) Behavior of FRP-reinforced concrete bridge decks under concentrated loads, Proc. 4th Int. Conf. on Advanced Composite Materials in Bridges and Structures (ACMBS IV), Canadian Society of Civil Engineering (CDCE), Calgary, Canada
  11. El-Gamal, S.E., El-Salakawy, E.F., and Benmokrane, B. (2005a) Behavior of concrete bridge deck slabs reinforced with fiberreinforced polymer bars under concentrated loads, ACI Structural Journal, Vol. 102, No. 5, pp. 727-735
  12. El-Gamal, S., El-Salakawy, E.F., and Benmokrane, B. (2005b) A New Punching Shear Equation for Two-Way Concrete Slabs Reinforced with FRP Bars, Proc. 7th Int. Symp. on Fibre-Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS- 7), New Orleans, USA, November 7-10, pp. 877-894 (SP-230-50)
  13. El-Salakawy, E.F., Benmokrane, B., and Desgagn, G. (2003a) FRP Composite Bars for the Concrete Deck Slab of Wotton Bridge, Canadian Journal of Civil Engineering, Vol. 30, No. 5, pp. 861-870 https://doi.org/10.1139/l03-055
  14. El-Salakawy, E. F., and Benmokrane, B. (2003b) Design and Testing of a Highway Concrete Bridge Deck Reinforced with Glass and Carbon FRP Bars, Field Applications of FRP Reinforcement: Case Studies, SP-215, Rizkalla, S. and Nanni, A., eds., American Concrete Institute, Farmington Hills, Mich., pp. 37-54
  15. Faza, S., Wagner, O., Deusser, S., and McClaskey, C. (1997) A new generation of fiber reinforced polymer rebars for concrete reinforcement, Proc. 3rd Int. Symp. on Non-Metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3), Japan Concrete Institute, Sapporo, Japan, Vol. 2, pp. 99-106
  16. Graddy, J.C., Kim, J., Whitt, J.H., Burns, N.H., and Klingner, R.E. (2002) Punching-Shear Behavior of Bridge Decks under Fatigue Loading, ACI Structural Journal, Vol. 99, No. 3, pp. 257-266
  17. Jacobson, D.A., Bank, L.C., Oliva, M.G., and Russell, J.S. (2005) Punching Shear Capacity of Double Layer FRP Grid Reinforced Slabs, Proc. 7th Int. Symp. on Fibre-Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-7), New Orleans, USA, November 7-10, pp. 857-876 (SP-230-49)
  18. Noritake, K., Kakihara, R., Kumagai, S., and Mizutani, J. (1993) Technora, an aramid FRP rod, Fiber-reinforced-plastic (FRP) reinforcement for concrete structures: properties and applications, A. Nanni, ed., Elsevier, New York, pp. 267-290
  19. Okazaki, M. (1993) Properties and applications of vinylon FRP rod (CLATEC ROD). Fiber-reinforced-plastic (FRP) reinforcement for concrete structures: properties and applications, Nanni, A. ed., Elsevier, New York, pp. 189-222
  20. Ospina, C.E., Nanni, A. (2007) CURRENT FRP-REINFORCED CONCRETE DESIGN TRENDS IN ACI 440.1R, Proc. 8th Int. Symp. on Fiber-Reinforced Polymer Reinforcement for Concrete Structures, FRPRCS-8, Triantafillou, T. C. ed., Patras, Greece, 14-6