DOI QR코드

DOI QR Code

Engineering Properties of Concrete Enhanced with Rice Husk Ash and Polypropylene Fiber

폴리프로필렌 섬유 보강 RHA콘크리트의 공학적 특성

  • 이윤 (대전대학교 토목공학과) ;
  • 박기태 (한국건설기술연구원) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2014.12.02
  • Accepted : 2015.02.04
  • Published : 2015.03.28

Abstract

Concrete, as a construction material, needs suitable reinforcement for tensile region due to weak tensile strength. Many researches on cement reduction have been attempted for $CO_2$ emissions during cement clinker production. In this paper engineering properties of concrete enhanced with polypropylene fiber (PPF) and rice husk ash (RHA) are evaluated. Fiber volume ratios of 0.125~0.375 and RHA replacement ratio of 0~20% are considered for concrete mixture. Lots of test including compressive, split, flexural and the related crack width, impact energy, and pull out test are performed and the results are evaluated considering the fiber ratios, fiber length and RHA replacement. Fiber and RHA ratios have dominant effects on tensile and compressive characteristics respectively, and the concrete with 0.125% of PPF and 10% of RHA shows the most effective enhancement for engineering properties. Appropriate addition of RHA and PPF are very effective both for engineering property enhancement and clean technology.

콘크리트는 인장거동에 취약하므로 적절한 보강재를 필요로 한다. 또한 시멘트 클링커 생산시 발생하는 $CO_2$로 인해 시멘트 사용량을 줄이려는 연구가 시도되고 있다. 본 연구에서는 폴리프로필렌 섬유와 왕겨재를 혼입한 콘크리트의 공학적 성능을 평가하였다. 섬유재는 0.125~0.375%의 수준을, 왕겨재는 0~20% 치환률을 고려하여 콘크리트 배합을 준비하였으며, 압축강도, 쪼갬인장강도, 휨강도와 균열폭, 내충격성, 인발특성을 평가하였다. 또한 섬유재 혼입률, 섬유재 길이, 왕겨재의 혼입률을 고려하여 실험결과를 분석하였다. 인장특성에 대해서는 섬유재의 혼입량이, 강도특성에서는 왕겨재의 혼입률이 지배적이었으며, 0.125%의 섬유재 혼입과 10% 왕겨재 치환인 배합에서 가장 효과적인 공학적 특성이 발현되었다. 적절한 왕겨재 및 섬유재의 혼입은 다양한 공학적 특성을 강화시킬 뿐 아니라 친환경적인 측면에서도 유리하다고 판단된다.

Keywords

References

  1. ACI Committee 544, Design Consideration for Steel Fiber Reinforced Concrete, ACI 544.4R, pp.12-24, 1999.
  2. P. Adebar, S. Mindess, D. St. Pierre, and B. Olund, "Shear tests of fiber concrete beams without stirrups," ACI Structural Journal, Vol.94, No.1, pp.68-76, 1997.
  3. 조창근, 한성진, 권민호, 임청권, "소성힌지부 강섬유 혼입 모르타르 적용 철근콘크리트 기둥의 내진성능 평가", 콘크리트학회 논문집, 제24권, 제3호, pp.241-248, 2012.
  4. 최세진, 안중길, 박기태, 권성준, "CSA 팽창재를 혼입한 철근보강 모르타르의 인장 경화-연화 특성에 관한 실험적 연구", 한국구조물진단유지관리공학회지, 제18권, 제1호, pp.101-110, 2014.
  5. 최세진, 박기태, 권성준, " CSA 팽창재를 혼입한 강섬유 보강 콘크리트의 역학적 성능 및 균열 저항성능 평가", 한국구조물진단유지관리공학회지, 제18권, 제1호, pp.75-83, 2014.
  6. 강수태, 류금성, "UHPCC의 압축응력-변형률 관계에 대한 강섬유 혼입률의 영향", 콘크리트학회 논문집, 제23권, 제1호, pp.67-75, 2011.
  7. 김윤일, 이양근, 김명성, "강섬유 혼입율이 강섬유보강 고강도 콘크리트의 작업성과 강도특성에 미치는 영향", 한국건축시공학회지, 제8권, 제3호, pp.75-83, 2008. https://doi.org/10.5345/JKIC.2008.8.3.075
  8. S. H. Lee, W. J. Park, and H. S. Lee, "Lifecycle $CO_2$ assessment method for concrete using $CO_2$ balance and suggestion to decrease LC$CO_2$ of concrete in South-Korean apartment," Energy and Buildings, Vol.58, pp.93-102, 2013. https://doi.org/10.1016/j.enbuild.2012.11.034
  9. K. H. Yang, E. A. Seo, and S. H. Tae, "Carbonation and $CO_2$ uptake of Concrete," Environmental Impact Assessment Review, Vol.46, No.4, pp.43-52, 2014. https://doi.org/10.1016/j.eiar.2014.01.004
  10. S. J. Kwon and H. W. Song, "Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling," Cement and Concrete Research, Vol.40, No.1, pp.119-127, 2010. https://doi.org/10.1016/j.cemconres.2009.08.022
  11. 유성원, 이형집, "하이볼륩 플라이애쉬 철근 콘크리트 보의 휨거동 실험", 한국콘크리트학회 논문집, 제26권, 제3호, pp.323-329, 2014.
  12. 원종필, 신유길, "다량의 플라이애쉬를 사용한 저강도 고유동 충전재의 내구특성에 관한 연구", 한국콘크리트학회 논문집, 제12권, 제1호, pp.113-122, 2000.
  13. 이진우, 이상수, "3성분계 무시멘트 경화체의 양생 방법에 따른 강도특성", 한국콘텐츠학회 논문집, 제14권, 제4호, pp.389-396, 2014.
  14. P. Chindaprasirt and S. Rukzon, "Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar," Construction and Building Materials, Vol.22, No.8, pp.1601-1606, 2008. https://doi.org/10.1016/j.conbuildmat.2007.06.010
  15. S. Rukzon, P. Chindaprasirt, and R. Mahachai, "Effect of grinding on chemical and physical properties of rice husk ash," International Journal of Minerals, Metallurgy and Materials, Vol.16, No.2, pp.242-247, 2009. https://doi.org/10.1016/S1674-4799(09)60041-8
  16. A. Ramznianpour, M. Mahdikhani, and G. Ahmadibeni, "The effect of rice husk ash on mechanical properties and durability of sustainable concretes," International Journal of Civil Engineering, Vol.7, No.2, pp.83-91, 2009.
  17. S. Hwang, P. S. Song, and B. C. Sheu, "Impact resistance of polypropylene fibre reinforced concrete," Journal of C.C.I.T, Vol.32, No.1, pp.1-14, 2003.
  18. P. S. Song, S. Hwang, and B. C. Sheu,"Strength properties of nylon and polypropylene fibre reinforced concretes,"Cement and Concrete Research, Vol.35, No.8, pp.1546-1550, 2005. https://doi.org/10.1016/j.cemconres.2004.06.033
  19. M. S. Meddah and M. Bencheikh, "Properties of concrete reinforced with different kinds of industrial waste fibre materials," Construction and Building Materials, Vol.23, No.10, pp.3196-3205, 2009. https://doi.org/10.1016/j.conbuildmat.2009.06.017
  20. O. Karahan and C. D. Atis, "The durability properties of polypropylene fibre reinforced fly ash concrete,"Materials and Design, Vol.32, No.2, pp.1044-1049, 2011. https://doi.org/10.1016/j.matdes.2010.07.011
  21. P. Ramadoss, and K. Nagamani, Tensile strength and durability characteristics of high performance fibre reinforced concrete," The Arabian Journal for Science and Engineering, Vol.33, No.2B, pp.307-319, 2008.
  22. H. Okamura and K. Maekawa, "Nonlinear Analysis and Constitutive Models of Reinforced Concrete," Tokyo(Japan), Gihodo-Shuppan, pp.102-181, 1991.
  23. A. A. Shawky, "Nonlinear Static and Dynamic Analysis for Underground Reinforced Concrete," Ph.D. Dissertation, Tokyo(Japan), University of Tokyo, pp.22-36, 1994.
  24. R. N. Krishna, "Rice Husk Ash-An Ideal Admixture for Concrete in aggressive environment," 37th Conference on OUR WORLD IN CONCRETE & STRUCTURES: 29-31 August, Singapore, 2012.