• Title/Summary/Keyword: 유리 온실

Search Result 253, Processing Time 0.025 seconds

Dry Matter Production, Distribution and Yield of Sweet Pepper Grown under Glasshouse and Plastic Greenhouse in Korea (유리온실과 플리스틱온실 재배환경하에서의 파프리카의 생장, 건물분배율 및 수량)

  • Jeong, Won-Ju;Lee, Jeong-Hyun;Kim, Ho-Cheol;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.258-265
    • /
    • 2009
  • This research was conducted to compare drymatter production and yield pattern between commercial glasshouse (G) and plastic greenhouse (PG) in Korea. In both greenhouses sawing and plating of sweet pepper was 28 August and 27 September, 2007. Destructive measurement and yield of sweet pepper, cv. 'Derby', was obtained from January to May, 2008. Averaged light transmissivity over 20 times observed 65% in G and 51 % in PG. The averaged daily radiation sum of greenhouses during whole growing period was $9.03MJ/m^2/day$ for G and $7.37MJ/m^2/day$ for PG Leaf area index (LAI) in G crop was 36% higher than the crop in PG at the end of experiment (247days after planting: DAP), whereas there was no significantly difference for 212 DAP in both greenhouses. Total dry matter production was $1759.9g{\cdot}m^{-2}$ for G and $1308.5g{\cdot}m^{-2}$ for PG Fruit production observed $14.1kg{\cdot}m^{-2}$ in G and $7.8kg{\cdot}m^{-2}$ in PG. There was slightly difference measurement of dry matter distribution of generative or vegetative parts to total dry matter between G and PG.

Illumination simulation for selective application and energy saving of solar cells in single-span glass greenhouse (단동식 유리온실에서 태양전지의 선별적 적용과 에너지 절감에 관한 조도 시뮬레이션)

  • Jung, Hai-Young;Lee, Boong-Joo
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1448-1456
    • /
    • 2019
  • In this study, when applying LED light sources within a single-span glass greenhouse for growing crops, the illumination simulation was performed on the ceiling and side of the glass greenhouse to determine the selective placement and effective light transmission of Si series solar cells and dye-sensitive solar cells (DSSC) for supplying LED power source. In addition, energy saving effects of glass greenhouses were analyzed for optimum lighting control when both daylight and LED light sources are considered in glass greenhouses.

Effects of frame ratio and length on the transmissivity of solar radiation in glasshouse by a computer simulation (컴퓨터 시뮬레이션에 의한 유리온실내의 일사 투과율에 미치는 골조율 및 동길이의 영향)

  • 김용현;이석건
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1998.10a
    • /
    • pp.55-62
    • /
    • 1998
  • 온실내에서 직달 및 산란일사의 투과율은 온실이 설치된 지역의 위도, 온실의 동방위 및 형상, 피복재의 광학적 특성, 년중일수, 기상 조건, 지붕면의 경사각 뿐만 아니라 온실의 길이, 구조물의 크기 등에 따라 달라질 수 있다. 현재 국내의 기상 조건에 적합한 표준형 유리온실의 설계 기준이 부분적으로 제시되고 있으나, 온실내의 광환경과 관련된 설계 기준은 제시되지 않고 있는 실정이다. (중략)

  • PDF

Effects of Greenhouse Covering Material on Environment Factors and Fruit Yield in Protected Cultivation of Sweet Pepper (파프리카 재배 온실의 피복재 종류에 따른 환경요인과 수량성)

  • Kim, Ho-Cheol;Jung, Sek-Gi;Lee, Jeong-Hyun;Bae, Hyang-Jong
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.253-257
    • /
    • 2009
  • To analysis effect of environment factors on productivity of sweet pepper according to greenhouse covering material (glass, plastic film), this was investigated. In glasshouse, outside light was positively correlated with yield as that $100MJ{\cdot}m^{-2}$ of outside light increased $300{\sim}500g{\cdot}m^{-2}$, also cumulative temperature was same tendency. On possibility of model development for yield estimate cumulative temperature was high than outside light. According to covering material, leaf photosynthesis, productivity per out-side light and term in glasshouse was more high 13%, 46%, and 47% compared with plastic film house, respectively. Result of analysis of effect of light, temperature, and $CO_2$ on yield, relative yield coefficient, yield increment coefficient, and yield reduction coefficient in glasshouse were more high 25%, 73%, and 34% compared with plastic film house, respectively. Hence, sweet pepper's growing in glasshouse compare with plastic film house had more productivity, but that had more sensitivity to charge of environment factors.

Forced Ventilation Number of Air Changes to Set Point of Inside Air Temperature in Summer Glasshouse (여름철 유리온실의 목표온도 유지를 위한 강제환기 회수)

  • 우영회;이정명;남윤일
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.223-231
    • /
    • 1995
  • Judicious control of high temperature is the most important task for a successful intensive - cultivation in greenhouses during the hot summer. Therefore, the climatological data at 31 locations in Korea were calculated using the modified model equation for ventilated in glasshouses during summer. Furthermore, the adequate number of air- changes or frequency of ventilation was estimated based on temperature settings, which is considered to be more active means of controlling summer glasshouse temperatures, was investigated. The major results can be summarized as follows: Forced ventilation of one air change per minutes was effective in maintaining the maximum air temperature below 35$^{\circ}C$ in the glasshouse haying 40% shading. It was impossible, however, to maintain air temperature below 3$0^{\circ}C$ in 40% shaded glasshouse with forced ventilation only.

  • PDF

A Difference Study on the Lighting Simulation of the Illuminance Values from Daylight for the Glass Greenhouse (자연광 투과에 따른 유리온실 조도분석에 관한 조명시뮬레이션 비교)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.350-354
    • /
    • 2017
  • In this study, the DIAlux program was simulated for the optimal conditions of daylight and artificial light sources(LED) in a glass greenhouse. From the results of the daylight simulation, the optimal design conditions for the glass greenhouse were established, which had a $90^{\circ}$ installation angle and a higher transmittance of glass. In the case of growing lettuce in a glass greenhouse, it was compared with artificial light sources, the artificial light source (LED) was used to produce a power consumption effect of 41%. These results suggest that lettuce be grown in an energy saving glass greenhouse.

Illumination Simulation of the Daylight using AGI S/W Program (AGI 프로그램을 활용한 자연광 조도시뮬레이션)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.58-62
    • /
    • 2017
  • In this study, the design conditions for the Korean-style glass greenhouse structure has been reduced to achieve the most efficient use of natural light. The AGI program was simulated for the optimal conditions of daylight in a glass greenhouse. From the results of daylight simulation, the axis position of the glass greenhouse's roof was not an important factor in the daylight effects regarding illumination and uniformity. In summer, there were long periods of daylight and high illumination levels. The illumination value of daylighting increased with increasing glass transparency value, and the illumination value was greatest at 14:00 hours. At this time, the rate of light variation according to the glass transparency was 89 [lux/%]. In addition, the optimal design conditions for the glass greenhouse were established, which were a $30[^{\circ}]$ or $150[^{\circ}]$ installation angle and higher transmittance of glass.

The Glass Greenhouse's Lighting Simulation for Ginseng with Solar Cell and LED (태양전지와 LED를 이용한 인삼재배용 유리온실의 조도 시뮬레이션)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.14-19
    • /
    • 2019
  • In this study, the Relux illumination program was used to simulate the optimal lighting design for a glass greenhouse with Si and DSSC solar-cells and LEDs. The results of the daylight simulation show that the optimum conditions were a structure angle of 90o and higher transmittance. The results of the illumination simulation produced a power consumption effect of 5.6 kwh in the summer (42[%] energy savings compared to full LED control) and 7.8 kwh in the winter (58[%] energy savings compared to full LED control). The results suggest that ginseng should be grown in an energy-saving glass greenhouse.

Change of Internal Temperature and Humidity According to Kind of Covering Materials in Sweet Pepper's Greenhouse (착색단고추 재배 온실의 피복재 종류에 따른 내부 온.습도 변화)

  • Kim, Ho-Cheol;Choi, Jun-Hyuk;Lee, Soo-Won;Lee, Jeong-Hyun;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • This research was conducted to investigate difference of internal temperature, humidity, and plant growth according to covering materials in sweet pepper's greenhouse. For growing period, daily mean internal temperature was not different between glass (GH) and plastic film house (PH), but the changed volume was more PH than GH. Internal humidity deficit was more PH than GH as that was 4.3 $g{\cdot}m^{-2}$ and 5.6 $g{\cdot}m^{-2}$, respectively. In change of internal temperature effected by different intensity of external light, that of PH was fasted twice that of GH, and that's tendency was effected by difference of internal temperature for several hours after sunrise. Leaf growth and photosynthetic product were more GH than PH, productivity of GH was better 80 percents than PH. As results, To improve productivity in PH compared with productivity in GH need to be the detailed managements of internal environmental factors in early period after sunrise.

A Simulation Model for the Analysis of Direct and Diffuse Solar Radiation in Glasshouse - Effect of orientation on the transmissivity of direct solar radiation in single- span glasshouse - (유리온실내의 직달일사 또 산란일사 해석을 위한 시뮬레이션 모형 - 동방위가 단동 온실내의 직달일사 투과율에 미치는 영향 -)

  • 김용현;이석건
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.176-182
    • /
    • 1997
  • A simulation model for the analysis of the transmissivity of direct and diffuse solar radiation In glasshouse was developed. This model would be applicable to investigate the influences of time of year, orientation and slope of glasshouse, dimensions of the frames used, and latitude of the site on the transmissivity of direct and diffuse solar radiation in single-span or multispan glasshouse. The transmissivity of diffuse solar radiation was 60.4% for the single-span glass-house. It was independent of both orientation and time of year, During the winter season, the transmissivity of direct solar radiation was 67~69% for the E-W orientation single-span glasshouse, which was 14~16% higher than that for the S-N orientation. Oppositely the transmissivity of direct solar radiation for the S-N orientation was higher than that for the E-W orientation. during the autumn season. There was no influence of the latitude In the country on the transmissivity of direct solar radiation.

  • PDF