Dry Matter Production, Distribution and Yield of Sweet Pepper Grown under Glasshouse and Plastic Greenhouse in Korea

유리온실과 플리스틱온실 재배환경하에서의 파프리카의 생장, 건물분배율 및 수량

  • Jeong, Won-Ju (Department of Horticulture & Plant Biotechnology, Chonnam National University) ;
  • Lee, Jeong-Hyun (Department of Horticulture & Plant Biotechnology, Chonnam National University) ;
  • Kim, Ho-Cheol (Department of Horticulture and Pat Animal-Plant Science, Wonkwang University) ;
  • Bae, Jong-Hyang (Department of Horticulture and Pat Animal-Plant Science, Wonkwang University)
  • 정원주 (전남대학교 식물생명공학과) ;
  • 이정현 (전남대학교 식물생명공학과) ;
  • 김호철 (원광대학교 원예.애완동식물학부) ;
  • 배종향 (원광대학교 원예.애완동식물학부)
  • Published : 2009.09.30

Abstract

This research was conducted to compare drymatter production and yield pattern between commercial glasshouse (G) and plastic greenhouse (PG) in Korea. In both greenhouses sawing and plating of sweet pepper was 28 August and 27 September, 2007. Destructive measurement and yield of sweet pepper, cv. 'Derby', was obtained from January to May, 2008. Averaged light transmissivity over 20 times observed 65% in G and 51 % in PG. The averaged daily radiation sum of greenhouses during whole growing period was $9.03MJ/m^2/day$ for G and $7.37MJ/m^2/day$ for PG Leaf area index (LAI) in G crop was 36% higher than the crop in PG at the end of experiment (247days after planting: DAP), whereas there was no significantly difference for 212 DAP in both greenhouses. Total dry matter production was $1759.9g{\cdot}m^{-2}$ for G and $1308.5g{\cdot}m^{-2}$ for PG Fruit production observed $14.1kg{\cdot}m^{-2}$ in G and $7.8kg{\cdot}m^{-2}$ in PG. There was slightly difference measurement of dry matter distribution of generative or vegetative parts to total dry matter between G and PG.

본 연구는 현재 대일 수출중인 상업적인 유리온실과 플라스틱 온실에서 파프리카 'Derby'를 공시품종으로 하여 국내 온실 간 생산량 차이 발생을 분석하여, 생산성 차이를 개선하고자 시설내부의 광량, 작물의 생장량 및 수량을 두 온실간 기간별로 비교 분석하였다. 재배기간 동안 평균 일중 광량은 유리온실 $9.03MJ/m^2/day$, 플라스틱 온실 $7.37MJ/m^2/day$로 23%정도 유리온실의 시설내부 광량이 많았다. 총 조사기간 동안 파프리카의 생장량은 유리온실 $1759.9g{\cdot}m^{-2}$, 플라스틱 온실 $1308.5g{\cdot}m^{-2}$으로 유리온실의 작물 생장량이 높았다. 총 건물생산량 대비 영양생장생식생장 기관의 건물분배는 시설내부 광량이 높은 유리온실에서 생식생장 기관의 건물분배는 높았고, 영양생장 기관의 건물분배는 낮았다. 두 온실의 파프리카 생산성은 유리온실 $14.1kg{\cdot}m^{-2}$, 플라스틱 온실 $7.8kg{\cdot}m^{-2}$으로 유리온실이 매우 높은 생산성을 보였다. 본 연구결과는 온실 간 파프리카의 기간별 동적인 건물생산량과 건물 분배 패턴, 수량을 분석함으로써 파프리카의 수량을 예측하고 우리나라 파프리카 생산성 향상을 위한 재배기술 분야의 기초 자료와 농가 간 생산성 차이 원인을 분석하고 그에 따른 생산성 극복 기술을 개발하는데 중요한 자료가 될 것이라고 판단된다.

Keywords

References

  1. Abdel-Mawgoud, AM.R., Y.N. Sassine, M. Bohme, A.F. Abou-Hadid, and S.O. EI-Abd. 2005. Sweet pepper biomass production and partitioning as affected by different shoot and root-zone conditions. Int. J. Bot. 1(2):151-157 https://doi.org/10.3923/ijb.2005.151.157
  2. Arnor, F.M. Del., G. Ortuno, M.D. Gomez-Lopez, and A.J. Garcia. 2008. Using growth functions to describe dry matter production of sweet pepper in greenhouses in southern Spain. Acta. Hort. 801: 1113-1120
  3. Bae, J.H. 1999. Growing technic of high quality in sweet pepper. The Kor. Soc. Hydroponic Cult. Res. Autunm Seminar:55-74 (in Korean)
  4. Cockshull, K.E., C.J. Graves, and C.R.J. Cave. 1992. The influence of shading on yield of glasshouse tomatoes. J. Hort. Sci. 67:11-24
  5. Demers, D.A., J. Charbonneau, and A. Gosselin. 1991. Effects de l'eclairage d'appoint sur la croissance et la productive du poivron. Can. J. Plant Sci. 71 :587-594 https://doi.org/10.4141/cjps91-088
  6. Dorais, M. 2003. The use of supplemental lighting for vegetable crop production: Light intensity, crop response, nutrition, crop management, cultural practices. Canadian Greenhouse Conference
  7. Erik, A.M. de Swart. 2007. Potential for breeding sweet pepper adapted to cooler growing conditions: A physiological and genetic analysis of growth traits in Capicum. Ph.D. Diss. Wageningen Agr. Univ., Production Ecology and Resource Conservation
  8. Gonzalez-Real, MM., A. Bailie, and H.Q. Liu. 2008. Influence of fruit load on dry matter and N-distribution in sweet pepper plants. Sci. Hort. 117:307-315 https://doi.org/10.1016/j.scienta.2008.05.026
  9. Heuvelink, E. and H. Challa. 1989. Dynamic optimization of artificial lighting in greenhouse. Acta Hort. 206:401-402
  10. Heuvelink, E. and R.P.M. Buiskool. 1995a. Influence of sink-source interaction on dry matter production in tomato. Ann. Bot. 75:381-389 https://doi.org/10.1006/anbo.1995.1036
  11. Heuvelink, E., L.GG Batta, and T.H.J. Damen. 1995b. Transmission of solar radiation by a multispan venlotype glasshouse: validation of a model. Agr. For. Meteorol. 74:41-59 https://doi.org/10.1016/0168-1923(94)02184-L
  12. Heuvelink, E. 1996. Dry matter partitioning in tomato: Validation of a dynamic simulation model. Ann. Bot. 77:71-80 https://doi.org/10.1006/anbo.1996.0009
  13. Heuvelink, E. 1996. Tomato growth and yield: quantitative analysis and synthesis. PhD Thesis. Wageningen Agr. Univ. Wageningen, The Neth
  14. Heuvelink, E., L.F.M. Marcelis, and O. Komer. 2004. How to reduce yield fluctuations in sweet pepper. Acta. Hort. 633:349-355
  15. Jeong, E.M., W.T. Kim, S.R. Kim, and S.H. Yun. 2008. The state and urgent problem of sweet pepper in Korea. Korea Rural Economy Institute, Seoul, Korea (in Korean)
  16. Jeong, W.I., I.K. Kang, J.Y. Lee, S.H. Park, H.S. Kim, D.J. Myoung, GT. Kim, and J.H. Lee. 2008. Study of dry and bio-mass of sweet pepper fruit and yield between glasshouse and plastic greenhouse. The Kor. Soc. Bio-Environ. Control. 17(2):541-544 (in Korean)
  17. Korea Agricultural Trade Information (KATI). 2009. The state of sweet pepper industry in Korea. Korea Agro-Fisheries Trade Corporation, Seoul, Korea (in Korean)
  18. Kwon, Y.S. and H. Chun. 1999. Production of chili pepper in different kinds of greenhouse in Korea. The Asian and Pacific Resion-Food and Fert. Techno. Ctr. Ext.-Bul. No. 478
  19. Lee, J.H., E. Heuvelink, and H. Challa. 2002. Effect of planting date and plant density on crop growth of cut chrysanthemum. J. Hort. Sci. Bio-Technol. 77:238-247
  20. Marcelis, L.F.M. 1993. Fruit growth and biomass allocation to the fruits in cucumber: 2. Effect of irradiance. Scientia Hort. 54:123-130 https://doi.org/10.1016/0304-4238(93)90060-4
  21. Marcelis, L.F.M. 1994. Effect of fruit growth, temperature and irradiance on biomass allocation to the vegetative parts of cucumber. Neth. J. Agr. Sci. 42:115-123
  22. Marcelis, L.F.M. and L.R. Baan Hofman-Eijer. 1996. Growth analysis of sweet pepper fruits (Capsicum annuum L.). Acta Hort. 412:470-478
  23. Marcelis, L.F.M., E. Heuvelink, L.R. Baan HofmanEijer, J. Den Bakker, and L.B. Xue. 2004. Flower and fruit abortion in sweet pepper in relation to source and sink strength. J. Expt. Bot. 55:2261-2268 https://doi.org/10.1093/jxb/erh245
  24. Myoung DJ. 2007. Correlation between climatic factors and yield of sweet pepper (Capsicum annuum L.) in glasshouse. Ms.C Thesis. Chonnam Natl. Univ., Dept. Hort. Plant Bio-Technol (in Korean)
  25. Nederhoff, E.M. and J.G Vegter. 1994. Photosynthesis of stand of tomato, cucumber and sweet pepper measured in greenhouse under various CO2 concentration. Ann. of Bot. 73:353-361 https://doi.org/10.1006/anbo.1994.1044
  26. Nielsen, T.H. and B. Veierskov. 1988. Distribution of dry matter in sweet pepper plants (Capsicum annuum L.) during the juvenile and generative growth phases. Scienlia. Hort. 35: 179-187 https://doi.org/10.1016/0304-4238(88)90111-2
  27. Vermeulen, P.C.M .. 2008. Kwantitative Informatie voor de Glastuinbouw. 2008
  28. Yu, I.H., Y. Paek, H.J. Kim, H. Chun, and H.Y. You. 2007. The actual state and improvement proposal of greenhouses for paprika. Kor. Soc. Hort. Sci. 17(2):41