• Title/Summary/Keyword: 유리형광선량계

Search Result 19, Processing Time 0.026 seconds

Evaluation of Usability and Radiation Dose Measurement Using Personal Radiation Exposure Dosimeter (방사선 개인피폭선량계를 이용한 피폭선량 측정 및 유용성 평가)

  • Kang, In-Seog;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.864-870
    • /
    • 2014
  • To propose a basis for the selection of personal dosimeters to measure radiation dose administration of radiation workers as a way to evaluate the usefulness dosimeter. For the dosimetry of the radiation workers 2012, during 1 year, 30 were radiation workers to measure personal dose. By personal exposure is measured cumulative dose, is investigated the performance of the TLD, PLD, OSLD. And comparing the measured value of each dosimeter dose and analyzed. Medical institutions, inspection work and quarterly confirmed the cumulative exposure dose of radiation workers. Using DAP and Ion-Chamber, to measure to compare TLD, PLD, OSLD dosimeter performance. A comparison of the directly through the X-ray dosimeter and The absolute value of the Ion-Chamber, OSLD more similar than in the TLD and PLD showed the dose values so the excellent ability to measure the results. Also in radiation generating area dose of radiation workers is higher than that in OSLD. Consequently, in terms of the individual exposure management OSLD is appropriated and beneficial than others.

Comparison on the Dosimetry of TLD and OSLD Used in Nuclear Medicine (광자극발광선량계와 열형광선량계를 이용한 핵의학과 선량 측정비교)

  • Lee, Wang-Hui;Kim, Sung-Chul;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.329-334
    • /
    • 2012
  • For the dosimetry of the radiation workers, film badge, Thermo Luminescent Dosimeter (TLD), and glass dosimeter are being used and recently, there is a growing trend of using Optically Stimulated Luminescence Dosimeter (OSLD) in the world. However, OSLD is only being applied some of the field in Korea and there has been almost no study made related to OSLD. Thus, the accumulated radiation dose of TLD and OSLD that have been most frequently used in the field was compared in the radiation workers of nuclear medicine and their working areasfor 3 months. As a result, the average surface dose showed 0.85 mSv difference with 1.27 mSv for TLD and 2.12 mSv for OSLD while having 0.73 mSv difference for the average depth dose with 1.33 mSv for TLD and 2.06 mSv for OSLD. The surface dose and depth dose of OSLD showed statistically significant result with higher measurement (p<0.05).

Study on Dosimetric Properties of Radiophotoluminescent Glass Rod Detector (유리선량계의 선량 특성에 관한 연구)

  • Rah, Jeong-Eun;Shin, Dong-Oh;Hong, Ju-Young;Kim, Hee-Sun;Lim, Chun-Il;Jeong, Hee-Gyo;Suh, Tea-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.4
    • /
    • pp.181-186
    • /
    • 2006
  • A radiophotoluminescent glass rod detector (GRD) system has recently become commercially available. We investigate the dosimetric properties of the GRD regarding the reproducibility of signal, dose linearity and energy dependence. The reproducibility of five measurements for 50 GRDs is presented by an average of one standard deviation of each GRD and it is ${\pm}1.2%$. It is found to be linear in response to doses of $^{60}Co$ beam in the range 0.5 to 50 Gy with a coefficient of linearity of 0.9998. The energy dependence of the GRD is determined by comparing the dose obtained using cylindrical chamber to that by using the GRD. The GRD response for each beam is normalized to the response for a $^{60}Co$ beam. The responses for 6 and 15 MV x-ray beams are within ${\pm}1.5%$ (1SD). The energy response of GRD for high-energy photon is almost the same as the energy dependence of LiF:Mg:Ti (TLD-100)and shows little energy dependence unlike p-type silicon diode detector. The GRDs have advantages over other detectors such diode detector, and TLD: linearity, reproducibility and energy dependency. It has been verified to be an effective device for small field dosimetry for stereotactic radiosurgery.

A Study on the Measurement Linearity of Photoluminescent Dosimeter (형광유리선량계의 계측 직선성 연구)

  • Jeong, Kyeong-Hwan;Jung, Dong-Kyung;Seo, Jeong-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.841-847
    • /
    • 2021
  • Related institutions that use radiation are diverse in Korea, such as research, medical care, and education. Recently, the number of examinations and visits to medical institutions is increasing. As a result, the number of radiological examinations in medical institutions is increasing. Radiation safety management is necessary as well as exposure of radiation workers. For safety management, first of all, it is necessary to wear the personal exposure dosimeter correctly and measure it accurately after wearing it. This study tries to evaluate and verify the measurement straightness of PLD devices by radiation of a diagnostic generator. Radiation division irradiation time interval was measured after irradiating 10 times at 10, 30, and 60 sec and irradiating the irradiation distance from 30 to 100 cm at 10 cm intervals to measure the change in absorbed dose depending on the distance. As a result, there was no difference in absorbed dose by time interval. This is considered to be helpful in various studies by using a diagnostic generator for the study of high absorbed dose.

A Study on the Surface Dose Distribution by Scattered and Leakage Radiation in Radiation Therapy (방사선 치료 시 산란선 및 누설선에 의한 표면선량 분포에 관한 연구)

  • Kang, Jongsu;Jung, Dongkyung;Kim, Yongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.351-357
    • /
    • 2018
  • During radiation therapy, the patient is exposed to secondary radiation by scattered and leakage radiation. For the diagnostic radiation, guidelines for reducing the patient's exposure as the diagnostic reference level are provided. However, in the case of therapeutic radiation, even though the radiation dose by the secondary radiation is considerable, the prescription dose is not limited because of the reason of the therapeutic efficiency. The purpose of this study was to evaluate the secondary radiation that the patient could be received at the peripheral tissue during the radiotherapy using the linear accelerator with the radiophotoluminescent glass dosimeter. In addition, we measured the degree of saturation of the luminescent amount according to the build-up characteristic of the radiophotoluminescent glass dosimeter. As a result of carrying out this study, the exposure dose decreased drastically farther away from the treatment field. When the head was irradiated with 1 Gy, the neck could be exposed to 18.45 mGy. When the same dose was irradiated at the neck, 15.55 mGy of the head and irradiated at the chest, 14.26 mGy of the neck and irradiated at the pelvis, 1.14 mGy of the chest were exposed separately. The degree of saturation of the luminescent intensity could be overestimated by 1.8 ~ 4.8% depending on time interval for 3 days.

A study on the effects of scattering dose on eyes and thyroid for panoramagraphy - Focus on TLD and PLD - (파노라마 촬영시 눈과 갑상선에 미치는 표면선량에 관한 연구 - TLD, PLD 중심으로 -)

  • Dong, Kyung-Rae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1118-1123
    • /
    • 2009
  • Ten hospitals from the Gwangju area were used to examine shallow dose to eyes and thyroid from panoramagraphy. Thermoluminescent dosimeter (TLD) and Photoluminescent dosimeter (PLD) were used as measurement devices at each hospital. ICRP 60 and ICRP 73 set standards for acceptability for eyes at 15mSv and thyroid at 1mSv per year. Left eye measures with TLD and PLD resulted in 0.19mSv and 0.24mSv respectively. Right eye measures with TLD and PLD resulted in 0.23mSv and 0.25mSv respectively. Thyroid measures with TLD and PLD resulted in 0.08mSv and 0.25mSv respectively with both measures not exceeding standards for acceptance. There was a significant difference in comparing the left eye and thyroid for TLD and PLD (p<0.01). There was no significant difference with the right eye (p>0.05). The absorbed dose measurements for eyes and thyroid using TLD and PLD in regards to panorama devices at each hospital were within the ICRP 60 recommendations; however, with the possibility of stochastic effect, all dose levels were taken into consideration.

  • PDF

A Study on Characteristic of Glass Dosimeter According to Graded Change of Tube Current (유리선량계의 단계별 관전류량 변화에 따른 특성연구)

  • Son, Jin-Hyun;Kim, Seong-Ho;Mun, Hyun-Jun;Kim, Lyun-Kyun;Son, In-Hwa;Kim, Young-Jun;Min, Jung-Whan;Kim, Ki-Won
    • Journal of radiological science and technology
    • /
    • v.37 no.2
    • /
    • pp.135-141
    • /
    • 2014
  • This study was evaluated the linearity and reproducibility according to dose, and reproducibility according to delay time by changing tube current amount (5 mAs, 10 mAs, 16 mAs, 20 mAs, 25 mAs, 32 mAs respectively, which are low energy radiations) using Glass Dosimeter (GD) and piranha semiconductor dosimeter which are used for measuring exposure dose. Measurements of radiation dose were performed using external detector of piranha 657 which is multi-function QA device (RTI Electronic, Sweden). Conditions of measurement were 80 kVp, SSD 100 cm and exposure region is $10cm{\times}10cm$. Glass dosimeter was exposed to radiation. Twenty-four glass dosimeters were divided into six groups (5 mAs, 10 mAs, 16 mAs, 20 mAs, 25 mAs, 32 mAs respectively), then measured. This study was resulted by measuring the linearity and reproducibility according to change of tube current in low energy field. In dose characteristic of GD, this study could be useful as previous study with regard to dose characteristic according to change of tube voltage in low energy field.

Comparison on the Dosimetry of OSLD and PLD Used in Nuclear Medicine (형광유리 선량계와 광자극 발광선량계를 이용한 핵의학과 선량 측정비교)

  • Park, Jeong-kyu;Son, Sang-Joon;Park, Myeong-Hwan
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.47-51
    • /
    • 2019
  • This study was conducted from July 1 to September 30, 2018 using Optically Stimulated Luminescence Dosimeter(OSLD) and photoluminescent glass dosimeter(PLD) to measure the 3-month exposure dose and the cumulative dose in the active working area of the nuclear medicine worker Respectively. As a result, the cumulative dose for three months in the worker and work area was measured as 1.97 mSv and 2.02 mSv in the PLD. The mean surface dose and the mean depth dose of the OSLD were measured to be 2.04 mSv. The difference in the total surface dose measured by the PLD and the OSLD was 0.66mSv and the total mean surface dose was 0.07mSv. The difference between the total depth dose and the total depth dose was 0.1mSv and 0.02mSv, respectively. It was found that the dose value of the OSLD was higher than that of the PLD. In addition, it was found that the maximum difference of 0.01mSv was observed between the PLD and the OSLD of the worker. For the dose measurement of the two dosimetry systems, there was no significant difference between the PLD and the OSLD in the surface dose of 0.239 (p>0.05). Also, the significance of PLD and OSLD in the deep dose was 0.109, which was not statistically significant (p>0.05).

Experimental Study with Respect to Dose Characteristic of Glass Dosimeter for Low-Energy by Using Internal Detector of Piranha 657 (Piranha 657의 Internal Detector를 이용한 저에너지에서 유리선량계의 선량 특성에 관한 연구)

  • Son, Jin-Hyun;Min, Jung-Whan;Kim, Hyun-Soo;Lyu, Kwang-Yeul;Lim, Hyun-Soo;Kim, Jung-Min;Jeong, Hoi-Woun
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.119-124
    • /
    • 2012
  • Recently, Glass Dosimeter (GD) with thermoluminescent Dosimeter (TLD) are comprehensively used to measure absorbed dose from diagnostic field to therapy field that means from low energy field to high energy field. However, such studies about dose characteristics of GD, such as reproducibility and energy dependency, are mostly results in high energy field. Because characteristic study for measurement devices of radiation dose and radiation detector is performed using 137Cs and 60Co which emit high energy radiations. Thus, this study was evaluated the linearity according to Piranha dose which measured by changing tube voltage (50kV, 80kV and 100kV which are low energy radiations), reproducibility and reproducibility according to delay time using GD. Measurement of radiation dose is performed using internal detector of Piranha 657 which is multi-function QA device (RTI Electronic, Sweden). Condition of measurement was 25mA, 0.02sec, 2.5mAs, SSD of 100 cm and exposure area with $10{\times}10cm^2$. As above method, GD was exposed to radiation. Sixty GDs were divided into three groups (50kV, 80kV, 100kV), then measured. In this study, GD was indicated the linearity in low energy field as high energy existing reported results. The reproducibility and reproducibility according to delay time were acceptable. In this study, we could know that GD can be used to not only measure the high energy field but also low energy field.

Radiation Dose during Fluoroscopy at the Organ from Extracorporeal Shock Wave Lithotripsy (체외충격파쇄석술에서 투시 시 주요 장기별 방사선 피폭선량)

  • Moon, Sung-Ho;Jung, Hong-Ryang;Lim, Cheong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.343-350
    • /
    • 2010
  • We measured the radiation exposure for 55 persons (male: 36, female: 19) who was diagnosed with kidney and ureter stones and received ESWL. The absorbed dose was measured at the organ which is expected to absorb relatively much radiation (kidney, bladder, liver). The radiation dose measurement voltage 80kVp, current of 5mA as a fixed model of the human body by using the Rando phantom with Radiophotoluminescent Glass Dosimeter. Absorbed dose was measured for two times (5 minute and 10 minute, each) and converted to effective dose. Mean number of treatment was 1.8 times (1~4) per patient was the mean time of radiation exposure533 seconds (248-2516). For the treatment of right renal stone, the effective dose of right kidney, left kidney, liver and bladder was 2.458mSv, 0.152mSv, 1.404 mSv and 0.019mSv, respectively. For the treatment of left renal stone, the effective dose of right kidney, left kidney, liver and bladder was 2.496mSv, 0.252mSv, 0.178 mSv, and 0.017mSv, respectively. For the treatment of distal ureter stone, the effective dose of right kidney, left kidney and bladder was 0.009mSv, 0.01mSv and 3.742mSv, respectively.