DOI QR코드

DOI QR Code

A Study on the Surface Dose Distribution by Scattered and Leakage Radiation in Radiation Therapy

방사선 치료 시 산란선 및 누설선에 의한 표면선량 분포에 관한 연구

  • Kang, Jongsu (Department of Radiological Science, Daegu Catholic University) ;
  • Jung, Dongkyung (Department of Radiologic Technology, Daegu Health College) ;
  • Kim, Yongmin (Department of Radiological Science, Daegu Catholic University)
  • 강종수 (대구가톨릭대학교 방사선학과) ;
  • 정동경 (대구보건대학교 방사선과) ;
  • 김용민 (대구가톨릭대학교 방사선학과)
  • Received : 2018.05.02
  • Accepted : 2018.06.30
  • Published : 2018.06.30

Abstract

During radiation therapy, the patient is exposed to secondary radiation by scattered and leakage radiation. For the diagnostic radiation, guidelines for reducing the patient's exposure as the diagnostic reference level are provided. However, in the case of therapeutic radiation, even though the radiation dose by the secondary radiation is considerable, the prescription dose is not limited because of the reason of the therapeutic efficiency. The purpose of this study was to evaluate the secondary radiation that the patient could be received at the peripheral tissue during the radiotherapy using the linear accelerator with the radiophotoluminescent glass dosimeter. In addition, we measured the degree of saturation of the luminescent amount according to the build-up characteristic of the radiophotoluminescent glass dosimeter. As a result of carrying out this study, the exposure dose decreased drastically farther away from the treatment field. When the head was irradiated with 1 Gy, the neck could be exposed to 18.45 mGy. When the same dose was irradiated at the neck, 15.55 mGy of the head and irradiated at the chest, 14.26 mGy of the neck and irradiated at the pelvis, 1.14 mGy of the chest were exposed separately. The degree of saturation of the luminescent intensity could be overestimated by 1.8 ~ 4.8% depending on time interval for 3 days.

방사선 치료 시 환자는 부득이하게 산란선과 누설선에 의한 2차 방사선 피폭을 받게 된다. 진단용 방사선의 경우 진단참조준위로 환자의 피폭을 줄이기 위한 가이드라인을 제시하고 있지만 치료용 방사선의 경우 2차 방사선에 의한 피폭선량이 상당함에도 불구하고 상한치 설정 시 치료 효과의 저감을 이유로 선량을 제한하지 않고 있다. 이에 본 연구는 선형가속기를 이용한 방사선 치료 시 원거리 조직에서 환자가 받을 수 있는 2차 방사선을 형광유리선량계로 측정하였으며 형광유리선량계의 빌드업 특성에 따른 형광량의 포화도를 측정하였다. 연구 결과 조사야 경계로부터 거리가 멀어질수록 피폭선량은 급격히 줄어들었으며, 두부 1 Gy 조사 시 경부 18.45 mGy, 경부 1 Gy 조사 시 두부 15.55 mGy, 흉부 1 Gy 조사 시 경부 14.26 mGy, 골반 1 Gy 조사 시 흉부 1.14 mGy로 피폭되었다. 형광량의 포화도는 판독시점에 따라 1.8 ~ 4.8% 정도 과대평가 될 수 있음을 확인하였다.

Keywords

References

  1. KOARA, "Survey on the Status of Radiation/RI Utilization in 2015," 2016M2B5A1907172, 2017.
  2. S. S. Kang, I. H. Go, G. J. Kim, S. H. Kim, Y. S. Kim, Y. J. Kim, W. Y. Kim, et al, Radiation Therapeutics, 3rd edition., Cheong-gu munwhasa, Seoul, 2014.
  3. ICRP, Radiological Protection in Medicine, ICRP Publication 105, 2007.
  4. ICRP, Radiological Protection and Safety in Medicine, ICRP Publication 73, 1996.
  5. KFDA, Guideline on patient dose suggestion of general radiology, 2012.
  6. Z. Knezevic, L. Stolarczyk, I. Bessieres, J. M. Bordy, S. Miljanic, P. Olko, "Photon dosimetry methods outside the target volume in radiation therapy: Optically stimulated luminescence(OSL), thermolumin escence(TL) and radiophotoluminescence(RPL) dosim etry," Radiation Measurements, Vol. 57, pp. 9-18, 2013. https://doi.org/10.1016/j.radmeas.2013.03.004
  7. Ashhi Techno Glass Corporation, "Explanation material of RPL glass dosimeter," Technical Report, ATGC, Tokyo, 2000.
  8. D. C. Kweon, “Build up Characteristics of Radiophot oluminescent Glass Dosimeters with Exposure Time of X-ray,” Journal of Biomedical Engineering Research, Vol. 38, No. 5, pp. 256-263, 2017. https://doi.org/10.9718/JBER.2017.38.5.256
  9. J. H. Son, J. W. Min, K. W. Kim, S. Y. Son, H. S. Lim, “Experimental study on build up characteristic of glass dosimeter of preheat and Non-preheat in lowenergy according to delay time,” Journal of the Korea Academia-Industrial cooperation Society, Vol. 14, No. 7, pp. 3412-3418, 2013. https://doi.org/10.5762/KAIS.2013.14.7.3412
  10. M. S. Yang, J. K. Park, S. H. Lee, Y. S. Kim, S. Y. Lee, S. Y. Cha, “Evaluation of usability of the shielding effect for thyroid shield for peripheral dose during whole brain radiation therapy,” The Journal of Korean Society for Radiation Therapy, Vol. 26, No. 2, pp. 265-272, 2014.
  11. D. W. Kim, J. W. Sung, H. H. Lee, M. G. Yoon, W. K. Chung, S. H. Bae, D. O. Shin, K. Z. Chung, Y. K. Lim, D. H. Shin, S. B. Lee, "Estimation of Secondary Scattered Dose from Intensity-modulated Radiotherapy for Liver Cancer Cases, Progress in Medical Physics, Vol. 24, No. 4, pp. 295-302, 2013. https://doi.org/10.14316/pmp.2013.24.4.295
  12. O. N. Yang, C. H. Lim, “A Study on the Thyroid Dose High-Energy Radiation Therapy of Lung Cancer,” The Journal of the Korea Contents Association, Vol. 15, No. 6, pp. 298-302, 2015. https://doi.org/10.5392/JKCA.2015.15.11.298
  13. C. C. Yu, F. Y. Hsu, W. H. Yu, M. T. Liu, S. S. Huang, "Assessing doses of radiotherapy with the risk of developing cancer in the head and neck," Radiation Measurements, Vol. 46, pp. 1948-1951, 2011. https://doi.org/10.1016/j.radmeas.2011.09.012
  14. S. Y. Lee, "Estimation of Secondary Malignancies According to Radiotherapy Methods for Prostate Cancer," Chungbuk National University, 2016.