• Title/Summary/Keyword: 유기 벤토나이트

Search Result 24, Processing Time 0.021 seconds

Effects of Fining Treatments on Color and Clearness of Apple Wine (청징방법에 따른 사과와인의 색과 투명도에 미치는 영향)

  • Bang, Byung-Ho;Jeong, Eun-Ja;Kang, Hyeran;Rhee, Moon-Soo;Yi, Dong-Heui;Paik, Jean Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.3
    • /
    • pp.368-373
    • /
    • 2017
  • Comparative fining trials were conducted in a laboratory to study the effects of fining treatments including polyvinylpolypyrrolidone (PVPP) and bentonite on the color and clearness of apple wine. The wines were subjected to three different fining treatments: PVPP, PVPP+bentonite (applied at the same time), and PVPP+bentonite (24 h later). Based on the results, all treatments induced noticeable decreases in wine color (APHA value) and turbidity. The treatment including PVPP and bentonite at the same time provided the best results in relation to wine color and clearness. PVPP was the most effective in the reduction of phenolic compounds, which means it helped wine obtain a paler color. Organic acids and aromatic profile were not altered by the fining treatments.

Organobentonite as a dual sorbent for Chlombenzene and Lead (클로로벤젠과 납의 동시 제거를 위한 흡착제로서의 유기 벤토나이트에 관한 연구)

  • 이정주;박재우;김일규
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.41-50
    • /
    • 2001
  • The use of clay has been the favored method of reducing or eliminating hazardous contaminants in the leachate from landfills. But, neither natural clays nor organoclays modified with surfactants are able to effectively sorb both heavy metals and organic contaminants. Therefore, the objective of this study is to determine the optimal amount of surfactant added on the clay mineral to effectively remove both of them. For this purpose, Na-Bentonite as the natural clay, and hexadecyltrimethylammonium (HDTMA) as the cationic surfactant were used, Chlorobenzene and lead ($Pb^{2-}$) were selected as representative contaminants. Experimental result showed that chlorobenzene sorption increased with increasing HDTMA to bentonite, ratios. On the contrary, the removal rate of lead decreased as the amount of HDTMA increased. The removal of chlorobenzene was influenced by the amount of HDTMA added to the bentonites rather than initial concentration of chlorobenzene, but the removal of lead was much more influenced by the initial concentration of lead. The adsorption of lead was not affected by chlorobenzene, and vice versa. The competitive sorption between the heavy metal and the organic contaminant was not present.

  • PDF

Comparison of the Properties of Poly(lactic acid) Nanocomposites with Various Fillers: Organoclay, Functionalized Graphene, or Organoclay/Functionalized Graphene Complex (유기화 점토, 작용기화 그래핀 및 유기화 점토/작용기화 그래핀 복합체 등의 필러를 사용한 Poly(lactic acid) 나노 복합체의 물성 비교)

  • Kwon, Kidae;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.232-239
    • /
    • 2014
  • Poly(lactic acid)(PLA) nanocomposites containing various nanofillers were synthesized using the solution intercalation method. Organically modified bentonite clay (NSE), octadecylamine-graphene oxide (ODA-GO), and an NSE/ODA-GO complex were utilized as nanofillers in the fabrication of PLA hybrid films. PLA hybrid films with varying nanofiller contents in the range of 0-10 wt% were examined and compared in terms of their thermomechanical properties, morphologies, and oxygen permeabilities. Transmission electron microscopy (TEM) confirmed that most of the NSE and ODA-GO nanofillers were dispersed homogeneously throughout the PLA matrix on the nanoscale, although some agglomerate NSE/ODA-GO complex particles were also formed. Among the three nanofillers for PLA hybrid films, the NSE/ODA-GO complex showed the best improvement in film thermal stability. In contrast, NSE and ODA-GO exhibited the best improvement in tensile mechanical properties and oxygen barrier properties of the PLA hybrid films, respectively.

Adsorption of Heavy Metals on Organobentonite (유기 벤토나이트에 의한 중금속 흡착특성)

  • 유지영;최재영;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.168-171
    • /
    • 2001
  • Organobentonite modified with hexadecyltrimethylammonium (HDTMA) was used to quantify an adsorption of heavy metals. Based on preliminary experiments, optimal soil/solution ratio, a range of pH, and electrolyte were selected. Adsorption experiments of cadmium and lead were conducted to quantify an adsorption selectivity to bentonite and organobentonite. Adsorption of cadmium and lead to bentonite was increased with increasing a soil/solution ratio. Adsorption of cadmium and lead to bentonite was increased with increasing a soil/solution ratio. Adsorptions of heavy metal to organobentonite were slightly reduced relative to bentonite. This study used the principle of hard-soft-acid-base (HBAB) to interpretate an adsorption mechanism. Because of competition between cadmium and lead. adsorption of cadmium and lead was reduced in mixture of heavy metals. Adsorption selectivity.

  • PDF

Aluminium-Pilland Bentonites with Amphoteric Surfactant as a Novel Organoclay for Phosphate Removal (양쪽성 계면 활성제로 치환된 알루미늄 층간가교 유기 벤토나이트를 이용한 수중 인산염 제거)

  • Kim, Soo-Hong;Kim, Ja-Keun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.966-972
    • /
    • 2007
  • A novel organoclay has been developed with aluminium-pillared clay modified with an amphoteric surfactant, N-Dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DDAPS). This novel organoclay is expected to have phosphorus removal capacity as well as organic and inorganic contaminant removal capacity, due to aluminum inside the clay structure. It also exhibited less surfactant desorption than conventional cation surfactant-based organoclays. Phosphorus in water can be decreased from 0.2 mg/L to 0.0012 mg/L in 27 hours with this organoclay. Also, cadmium could removed from water using this proposed organo-clay. Experiments were performed under various pHs and amphoteric surfactants sorption capability was the highest at pH 5 when more of the amphoteric surfactant head group took on positive charges.

Effects of Dietary Silicate Minerals on Ammonia Emission from Excreta and Performance of Laying Hens (규산염계 광물의 급여가 산란계분의 암모니아 발생과 생산성에 미치는 효과)

  • Lee, Jin-Sung;Kang, Sung-Won;Yoon, Jin-A;Son, Yong-Suk
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.199-208
    • /
    • 2009
  • This study was conducted to investigate the effects of dietary silicate minerals on ammonia emission from the excreta and performance in laying hens. A total of one thousand and twenty 49 week-old Lohmann brown layers were divided into three treatment groups consisting two replicates of 170 birds each. The experimental diets were containing three kinds of silicate minerals (Sand, Na-bentonite and SY feldspar) added at the level of 2% by top-dressing. Ammonia emission from the excreta was significantly decreased (p<0.05) by the supplementation of Na-bentonite or SY feldspar. N concentration of the excreta was significantly higher (p<0.05) for the hens fed Na-bentonite or SY feldspar compared to those fed sand. However, no significant differences were observed in feed intake and laying performance with over 80% laying rate observed for all the treatments. Egg shell strength was diminished when SY feldspar was added to the diet. As a whole, the results obtained from the experiment indicated that supplementation of Na-bentonite or SY feldspar added at 2% to the laying hen diet should not affect laying performance but help to reduce ammonia from the excreta at the same time.

  • PDF

Study on the reuse and recycling of the used foundry sands (폐주물사의 재활용 활성화 방안에 관한 연구)

  • Kim, Young-Jun;Chung, Myung-Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.38-44
    • /
    • 2010
  • Foundry sands are made up of silica and some coking agents, such as bentonite or resin, and used as templates for the production of various casting products. Foundry sands, which are repeatedly used, were finally transformed into the waste materials by heat, losing their proper functions. The used foundry sands have been treated as general wastes according to the contents of coking agents used. Silica, however, can be recycled through the proper treatment due to its physical property not to changed by heat. In this study, we have identified and investigated at the occurrence, treatment and recycling status of the used foundry sands, as well as for the regime and inhibitory factors of the recycling of them in domestic and foreign cases.

Removing Contaminants from the Surface of Jagyeongnu of Changgyeonggung Palace, National Treasure No. 229 (국보 제229호 창경궁 자격루 누기 표면에 고착된 오염물 제거 방법 연구)

  • You, Ha Rim;Jo, Ha Nui;Lee, Jae Sung;Yu, Ji A;Park, Young Hwan;Ryu, Dong Wan
    • Journal of Conservation Science
    • /
    • v.37 no.2
    • /
    • pp.101-119
    • /
    • 2021
  • Korea's National Treasure No. 229, the Jagyeongnu (clepsydra) of Changgyeonggung Palace, is a scientific and cultural property representing the pinnacle of science and technology in the Joseon Dynasty. Currently, only the large, mid-sie, and small Pasuhos (bronze jars) remain. During a nearly two-year conservation project by the Cultural Heritage Conservation Science Center (CHCSC) that began in 2018, conservators identified the contaminants on the surface of the water clock's components. It turned out that the contaminants had been caused by the exposure of squalane and silicone oil, used in an earlier preservation treatment, to the elements. The CHCSC conducted experiments to determine the most effective method to remove the contaminants. First, the conservators tried using an organic solvent, a poultice, and the application of toluene and bentonite, which yielded excellent reactivity and significant color difference changes (𝚫E). However, the reactivity was insufficiently effective to warrant the health hazards to the conservators and the environment (toluene is toxic). Although organic solvents required considerably more effort, time, and human resources, the conservators confirmed that their use achieved a true color difference variation (𝚫E) that was within the same range as the toxic hydrocarbon. Thus, they confirmed that using an organic surfactant was the best method for removing the contaminants.

Preparation and Properties of Autoxidation Drying Type Waterborne Coatings Containing Bentonite (벤토나이트가 포함된 자동산화 건조형 수성코팅제의 제조 및 특성)

  • 이석기;구광모;이병교
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1067-1074
    • /
    • 2001
  • Four different composition of autoxidation drying type waterborne coatings (WBC-1, WBC-2, WBC-3, WBC-4) were prepared by the compounding of bentonite (BEN) as a water swellable clay and organometallic soaps as a drier with acrylic binder and coating additives. The solution viscosity, solid content, rheological properties and drying rate of WBCs were investigated. Also the thermal stability, the transmittance and the water-resistance of the films casted by WBCs were measured, and the surface topology of WBC films were investigated by the scanning probe microscopy. As WBC-2, WBC-3 and WBC-4 containing BEN showed the thixotropy with the shear rate, the storage stability of WBC was a excellent. When the driers was mixed in the ratio of Mn/Zn/Ba=1/2/3, the dry ability of WBCs showed maximum as 5.0 sec at 60$\^{C}$. The initial decomposition temperature and the transmittance of WBC films containing BEN increased in range of 32.2∼54.7$\^{C}$ and 5.1∼8.6% than the commercial WBC (MC-21W), respectively. The water resistance of WBC films increased in order of MC-21W

  • PDF

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.