DOI QR코드

DOI QR Code

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste

고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰

  • Jin-Seok Kim (Disposal Performance Demonstration R&D Division, Korea Atomic Energy Research Institute) ;
  • Seung Yeop Lee (Disposal Performance Demonstration R&D Division, Korea Atomic Energy Research Institute) ;
  • Sang-Ho Lee (Disposal Performance Demonstration R&D Division, Korea Atomic Energy Research Institute) ;
  • Jang-Soon Kwon (Disposal Performance Demonstration R&D Division, Korea Atomic Energy Research Institute)
  • 김진석 (한국원자력연구원 저장처분성능검증부) ;
  • 이승엽 (한국원자력연구원 저장처분성능검증부) ;
  • 이상호 (한국원자력연구원 저장처분성능검증부) ;
  • 권장순 (한국원자력연구원 저장처분성능검증부)
  • Received : 2023.04.17
  • Accepted : 2023.08.23
  • Published : 2023.08.30

Abstract

The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.

원자력발전소의 사용후핵연료(Spent Nuclear Fuel: SNF)에 대한 최종처분은 지하 심부의 지질학적 저장소에서 이루어진다. 사용후핵연료를 감싸는 금속처분용기는 주철과 구리 등으로 제작되어 방사성핵종을 장기간 격리할 예정이며, 공학적방벽과 천연방벽으로 구성된 다중방벽처분시스템에 의해 보호를 받도록 설계된다. 지하 심부의 환경(심층처분환경)은 점차 무산소의 환원환경으로 바뀌게 되며, 이러한 환경에서 구리처분용기의 부식을 일으킬 수 있는 유력한 물질 중 하나는 황화물이다. 황화물에 의한 응력균열부식은 구리처분용기의 안정성을 크게 저하시켜 처분장의 장기안전성에 큰 영향을 미칠 수 있다. 심층처분환경에는 황산염이 다양한 형태로 존재 또는 유입될 수 있으며, 황산염환원미생물에 의해 황화물로 전환되어 구리처분용기의 부식에 기여할 수 있다. 완충재와 뒤채움재의 유력한 후보물질인 벤토나이트에는 주로 석고(CaSO4)와 같은 산화형태의 황산염 광물이 포함되어 있다. 심층처분환경 내에 미생물이 생장할 만한 공간이 있고 유기 탄소 등 전자공여체가 충분히 공급된다면 미생물 활동에 의해 황산염이 황화물로 환원될 수 있다. 하지만 근계영역에서 생성된 황화물과 지권으로부터 유입되는 황화물 중 대부분은 완충재에 의해 차단되어 극히 일부만이 처분용기에 도달할 것이다. 처분환경에서 존재가능한 황화철 광물 중 하나인 황철석은 용해과정에서 황산염을 발생시켜 구리처분용기의 부식에 기여할 수 있다. 하지만 황철석의 극히 낮은 용해도로 인해 산화 생성물의 양은 매우 적을 것이고 포화된 벤토나이트의 낮은 수리전도도로 인해 처분용기로 산화 생성물의 이동은 제한될 것이다. 우리는 심층처분환경에서 황산염의 존재와 환원 그리고 황화물과 황철석의 형성 및 거동 특성 등에 관한 주요 연구 사례 등을 종합적으로 분석, 정리하였고, 고준위방사성폐기물 처분장의 장기안전성에 대한 황산염과 황화물의 영향을 이해하고자 하였다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 지원을 받아 수행된 연구사업입니다(No.2021M2E1A1085202).

References

  1. Becker, R. and Oijerholm, J. (2017) Slow strain rate testing of copper in sulfide rich chlorite containing deoxygenated water at 90℃. Swedish Radiation Safety Authority. Technical Report SSM 2017:02.
  2. Bengtsson, A., Edlund, J., Hallbeck, B., Heed, C. and Pedersen, K. (2015) Microbial sulfide-producing activity in MX-80 bentonite at 1750 and 2000 kgm-3 wet density. Report SKB R-15-05.
  3. Bengtsson, A., Blom, A., Hallbeck, B., Heed, C., Johansson, L., Stahlen, J. and Pedersen, K. (2017a) Microbial sulfide-producing activity in water saturated MX-80, Asha and Calcigel bentonite at wet densities from 1,500 to 2,000 kg m-3. Report SKB TR-16-09.
  4. Bengtsson, A., Blom, A., Johansson, L., Taborowski, T., Eriksson, L. and Pedersen, K. (2017b) Bacterial sulfide-producing activity in water saturated iron-rich Rokle and iron-poor Gaomiaozi bentonite at wet densities from 1,750 to 1,950 kg m-3. Report SKB TR-17-05.
  5. Bosch, J. and Meckenstock, R.U. (2012) Rates and potential mechanism of anaerobic nitrate-dependent microbial pyrite oxidation. Biochem. Soc. Trans., v.40, p.1280-1283. doi: 10.1042/BST20120102
  6. Bosch, J., Lee, K.Y., Jordan, G., Kim, K.W. and Meckenstock, R.U. (2012) Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans. Environ. Sci. Technol., v.46, p.2095-2101. doi: 10.1021/es2022329
  7. Canfield, D.E., Thamdrup, B. and Fleischer, S. (1998) Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria. Limnol. Oceanogr., v.43, p.253-264. doi: 10.4319/lo.1998.43.2.0253
  8. Chandra, A.P. and Gerson, A.R. (2010) The mechanisms of pyrite oxidation and leaching: a fundamental perspective. Surf. Sci. Rep., v.65, p.293-315. doi: 10.1016/j.surfrep.2010.08.003
  9. Fernandez, R., Ruiz, A.I., and Cuevas, J. (2014) The role of smectite composition on the hyperalkaline alteration of bentonite. Appl. Clay Sci., v.95, p.83-94. doi: 10.1016/j.clay.2014.03.015
  10. Forsstrom, A., Bossuyt, S., Yagodzinskyy, Y., Tsuzaki, K. and Hanninen, H. (2019) Strain localization in copper canister FSW welds for spent nuclear fuel disposal. J. Nucl. Mater., v.523. p.347-359. doi: 10.1016/j.jnucmat.2019.06.024
  11. Ganchenkova, M.G., Yagodzinskyy, Y.N., Borodin, V.A. and Hanninen, H. (2014) Effects of hydrogen and impurities on void nucleation in copper: simulation point of view. Phil. Mag., v.94, p.3522-3548. doi: 10.1080/14786435.2014.962642
  12. Gleisner, M., Herbert, R.B. and Frogner Kockum, P.C. (2006) Pyrite oxidation by Acidothiobacillus ferrooxidans at various concentrations of dissolved oxygen. Chem. Geol., v.225, p.16-29. doi: 10.1016/j.chemgeo.2005.07.020
  13. Goo, J.Y., Kim. J.S., Kwon, J.S. and Jo. H.Y. (2022) A literature review on studies of bentonite alteration by cement-bentonite interactions. Econ. Environ. Geol., v.55, p.219-229. doi: 10.9719/EEG.2022.55.3.219
  14. Havemann, S., Pedersen, K. and Ruotsalainen, P. (1998) Geomicrobial investigations of groundwaters from Olkiluoto, Hastholmen, Kivetty and Romuvaara. Helsinki, Finland: Posiva Oy. Report POSIVA 98-09.
  15. Havemann, S.A., Nilsson, E.L. and Pedersen, K. (2000) Regional distribution of microbes in groundwater from Hastholmen, Kivetty, Olkiluoto and Romuvaara. Helsinki, Finland: Posiva Oy. Report POSIVA 2000-06.
  16. Haynes, H.M., Nixon, S., Lloyd, J.R. and Birgersson, M. (2019) Verification of microbial sulfide-producing activity in Calcigel bentonite at saturated densities of 1,750 and 1,900 kg m-3. Report SKB P-19-07.
  17. Hol, A., van der Weijden, R.D., Van Weert, G., Kondos, P. and Buisman, C.J.N. (2010) Bio-reduction of pyrite investigated in a gas lift loop reactor. Int. J. Miner. Process., v.94, p.140-146. doi: 10.1016/j.minpro.2010.02.002
  18. IAEA (2011) Safety of radioactive waste disposal facilities, no. Specific Safety Requirements No. SSR-5, Vienna.
  19. Jorgensen, C.J., Jacobsen, O.S, Elberling, B. and Aamand, J. (2009) Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environ. Sci. Technol., v.43, p.4851-4857. doi: 10.1021/es803417s
  20. Karnland, O., Olsson, S., Dueck, A., Birgersson, M., Nilsson, U., Hernan-Hakansson, T., Pedersen, K., Nilsson, S., Eriksen, T.E. and Rosborg, B. (2009) Long term test of buffer material at the Aspo Hard Rock Laboratory, LOT project. Final report on the A2 test parcel. SKB Report TR-09-29.
  21. King, F. and LeNeveu, D. (1992) Prediction of the Lifetimes of Copper Nuclear Waste Containers, in Proceedings of Conference on Nuclear Waste Packaging, FOCUS '91, (American Nuclear Society, La Grange Park, IL), p.253-261.
  22. King, F., Ahonen, L., Taxen, C., Vuorinen, U. and Werme, L. (2002) Copper corrosion under expected conditions in a deep repository. Report POSIVA 2002-01.
  23. King, F. and Newman, R. (2010) Stress corrosion cracking of copper canister. Report SKB TR-10-04.
  24. King, F., Lilja, C., Pedersen, K., Pitkanen, P. and Vahanen, M. (2010) An update of the state of-the-art report on the corrosion of copper under expected conditions in a deep geologic repository. Report SKB TR-10-67.
  25. King, F. and Lilja, C. (2011) Scientific basis for corrosion of copper in water and implications for canister lifetimes. Corr. Sci. Eng. Technol., v.46, p.153-158. doi: 10.1179/1743278210Y.0000000002
  26. King, F. (2011) Modelling long term corrosion behaviour of copper canisters in KBS-3 repository. Corros. Sci. Eng. Technol., v.46, p.217-222. doi: 10.1179/18211Y.0000000004
  27. King, F. (2013) A review of the properties of pyrite and the implication for corrosion of the copper canister. Report SKB TR13-19.
  28. King, F., Lilja, C., Pedersen, K. and Vahanen, M. (2013) Progress in the understanding of the long-term corrosion behavior of copper canisters. J. Nucl. Mater., v.438, p.228-237. doi: 10.1016/j.jnucmat.2013.02.080
  29. Kumpulainen, S. and Kiviranta, L. (2010) Mineralogical and chemical characterization of various bentonite and smectite-rich clay materials. Posiva Working Report 2010-52.
  30. Kumpulainen, S. and Kiviranta, L. (2011) Mineralogical, chemical and physical study of potential buffer and backfill materials from ABM Test Package 1. Posiva Working Report 2011-41.
  31. Lambert, J.M., Simkovich, G. and Walker, P.L. (1980) Production of pyrrhotites by pyrite reduction. Fuel, v.59, p.687-690. doi: 10.1016/0016-2361(80)90019-8
  32. Lambert, J.M., Simkovich, G. and Walker, P.L. (1998) The kinetics and mechanism of the pyrite-to-pyrrhotite transformation. Metal. Mater. Trans. B, v.29, p.385-396. doi: 10.1007/s11663-998-0115-x
  33. Lee, J.U., Chon, H.T. and John, Y.W. (1997) Geochemical characteristics of deep granitic grounwater in Korea. Journal of the Korean Society of Groundwater Environment, v.4, p.199-211.
  34. Lee, J.Y., Lee, S.Y., Baik, M.H., and Jeong, J.T. (2013) Existence and Characteristics of Microbial cells in the Bentonite to be used for a Buffer Material of High-Level Wastes. J. Korean Radioac. Waste Soc., v.9, p.33-40.
  35. Macdonald, D.D. and Sharifi-Asl, S. (2011) Is copper immune to corrosion when in contact with water and aqueous solutions?. Swedish Radiation Safety Authority. Research Report SSM 2012:11.
  36. Masurat, P., Eriksson, S. and Pedersen, K. (2010a) Evidence of indigenous sulphate reducing bacteria in commercial Wyoming bentonite MX-80. Appl. Clay Sci., v.47, no.1-2, p.51-57. doi: 10.1016/j.clay.2008.07.002
  37. Masurat, P., Eriksson, S. and Pedersen, K. (2010b) Microbial sulphide production in compacted Wyoming bentonite MX-80 under in situ conditions relevant to a repository for high-level radioactive waste. Appl. Clay Sci., v.47, no.1-2, p.58-64. doi: 10.1016/j.clay.2009.01.004
  38. Moses, C.O., Nordstrom, D.K., Herman, J.S. and Mills, A.L. (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim. Cosmochim. Acta, v.51, p.1561-1571. doi: 10.1016/0016-7037(87)90337-1
  39. Muurinen, A. (2010) Studies on the chemical conditions and microstructure in package 1 of alternative buffer materials project (ABM) in Aspo. Eurajoki, Finland: Posiva Oy. Working Report 2010-11.
  40. Pedersen, K., Motamedi, M., Karnland, O. and Sanden, T. (2000a) Mixing and sulphate reducing activity of bacteria in swelling compacted bentonite clay under high-level radioactive waste repository conditions. J. Appl. Microbiol., v.89, p.1038-1047. doi: 10.1046/j.1365-2672.2000.01212.x
  41. Pedersen, K., Motamedi, M., Karnland, O. and Sanden, T. (2000b) Cultivability of microorganisms introduced into a compacted bentonite clay buffer under high-level radioactive waste repository conditions. Eng. Geol., v.58, p.149-161. doi: 10.1016/S0013-7952(00)00056-9
  42. Pedersen, K. (2008) Microbiology of Olkiluoto groundwater. Results and interpretations 2007. Eurajoki, Finland: Posiva Oy. Working Report POSIVA 2008-34.
  43. Pedersen, K., Arlinger, J., Edlund, J., Eriksson, L., Lydmark, S., Johansson, J., Jagevall, S. and Rabe, L. (2010) Microbiology of Olkiluoto and ONKALO groundwater. Results and interpretations, 2008-2009. Eurajoki, Finland: Posiva Oy. Working Report 2010-60.
  44. Posiva (2009) Olkiluoto site description 2008. Eurajoki, Finland: Posiva Oy. Report POSIVA 09-01.
  45. Posiva (2012a) Safety case for the disposal of spent nuclear fuel at Olkiluoto - Features, Events and Processes, Eurajoki, Finland: Posiva Oy. Report POSIVA 2012-07.
  46. Posiva (2012b) Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto - Performance Assessment 2012. Eurajoki, Finland: Posiva Oy. Report POSIVA 2012-04.
  47. Posiva (2013a) Safety case for the disposal of spent nuclear fuel at Olkiluoto - Design Basis 2012. Eurajoki, Finland: Posiva Oy. Report POSIVA 2012-03.
  48. Posiva (2013b) Olkiluoto Site Description 2011. Eurajoki, Finland: Posiva Oy. Report POSIVA 2011-02.
  49. Raiswell, R. and Canfield, D.E. (2012) The iron biogeochemical cycle past and present. Geochemical Perspectives, v.1, p.220. doi: 10.7185/geochempersp.1.1
  50. Rickard, D. (2006) The solubility of FeS. Geochim. Cosmochim. Acta, v.70, p.5779-5789. doi: 10.1016/j.gca.2006.02.029
  51. Rickard, D. and Luther, G.W. (2007) Chemistry of iron sulfides. Chem. Rev., v.107, p.514-562. doi: 10.1021/cr0503658
  52. SKB (2010) Design and production of the KBS-3 repository. Report SKB TR-10-12.
  53. SKB (2013) RD&D Programme 2013: Programme for research, development and demonstration of methods for the management and disposal of nuclear waste. Report SKB TR-13-18.
  54. SKB (2016) RD&D Programme 2016: Programme for Research, development and demonstration of methods for the management and disposal of nuclear waste. Report SKB TR-16-15.
  55. Sun, Z., Chen, Y.G, W.M., Cui, Y.J., and Wang, Q. (2020) Swelling deformation of Gaomiaozi bentonite under alkaline chemical conditions in a repository. Eng. Geol., v.279, p.105891. doi: 10.1016/j.enggeo.2020.105891
  56. Taniguch, N. and Kawasaki, M. (2008) Influence of sulphide concentration on the corrosion behaviour of pure copper in synthetic sea water. J. Nucl. Mater., v.379, p.154-161. doi: 10.1016/j.jnucmat.2008.06.010
  57. Torrento, C,, Cama, J,, Urmeneta. J, Otero, N. and Soler, A. (2010) Denitrification of groundwater with pyrite and Thiobacillus denitrificans. Chem. Geol., v.278, p.80-91. doi: 10.1016/j.chemgeo.2010.09.003
  58. Truche, L., Berger, G., Destrigneville, C., Guillaume, D. and Giffaut, E. (2010) Kinetics of pyrite to pyrrhotite reduction by hydrogen in calcite buffered solutions between 90 and 180℃: implications for nuclear waste disposal. Geochim. Cosmochim. Acta, v.74, p.2894-2914. doi: 10.1016/j.gca.2010.02.027
  59. Vaughan, D.J. (2005) Minerals/Sulphides. In Encyclopedia of geology. Amsterdam: Elsevier, von Oertzen G, p.574-586.
  60. Werme, L., Sellin, P. and Kjellbert, N. (1992) Copper canisters for nuclear high level waste disposal. Corrosion aspects, SKB TR92-26. 
  61. Wersin, P., Spahiu, K. and Bruno, J. (1994) Kinetic modelling of bentonite-canister interaction. long-term predictions of copper canister corrosion under oxic and anoxic conditions. SKB TR 94-25.
  62. Wersin, P., Alt-Epping, P., Pitkanen, P., Roman-Ross, G., Trinchero, P., Molinero, J., Smith, P., Snellman, M., Filby, A. and Kiczka, M. (2014) Sulfide fluxes and concentrations in the spent nuclear fuel repository at Olkiluoto. Eurajoki, Finland: Posiva Oy. Report POSIVA 2014-01.
  63. Zheng, L., Rutqvist, J., Birkholzer, J.T. and Liu, H.H. (2015) On the impact of temperature up to 200℃ in clay repositories with bentonite engineer barrier system: A study with coupled thermal, hydrological, chemical, and mechanical modeling: Eng. Geol., v.197, p.278-295. doi: 10.1016/j.enggeo.2015.08.026