Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.2.232

Comparison of the Properties of Poly(lactic acid) Nanocomposites with Various Fillers: Organoclay, Functionalized Graphene, or Organoclay/Functionalized Graphene Complex  

Kwon, Kidae (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
Chang, Jin-Hae (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
Publication Information
Polymer(Korea) / v.38, no.2, 2014 , pp. 232-239 More about this Journal
Abstract
Poly(lactic acid)(PLA) nanocomposites containing various nanofillers were synthesized using the solution intercalation method. Organically modified bentonite clay (NSE), octadecylamine-graphene oxide (ODA-GO), and an NSE/ODA-GO complex were utilized as nanofillers in the fabrication of PLA hybrid films. PLA hybrid films with varying nanofiller contents in the range of 0-10 wt% were examined and compared in terms of their thermomechanical properties, morphologies, and oxygen permeabilities. Transmission electron microscopy (TEM) confirmed that most of the NSE and ODA-GO nanofillers were dispersed homogeneously throughout the PLA matrix on the nanoscale, although some agglomerate NSE/ODA-GO complex particles were also formed. Among the three nanofillers for PLA hybrid films, the NSE/ODA-GO complex showed the best improvement in film thermal stability. In contrast, NSE and ODA-GO exhibited the best improvement in tensile mechanical properties and oxygen barrier properties of the PLA hybrid films, respectively.
Keywords
poly(lactic acid); organoclay; functionalized graphene oxide; organoclay/functionalized graphene complex; nanocomposite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 I. Jung, D. A. Dikin, R. D. Piner, and R. S. Ruoff, Nano Lett., 8, 4283 (2008).   DOI   ScienceOn
2 J.-H. Chang, M. K. Mun, and I. C. Lee, J. Appl. Polym. Sci., 98, 2009 (2005).   DOI   ScienceOn
3 T. K. Chen, Y. I. Tien, and K. H. Wei, Polymer, 41, 1345 (2000).   DOI   ScienceOn
4 T. D. Fornes, P. J. Yoon, D. Lunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002).   DOI   ScienceOn
5 K. M. Varlot, E. Reynaud, G. Virier, and J. Varlet, J. Polym. Sci., Part B: Polym. Phys., 40, 272 (2002).   DOI
6 R. K. Bharadwaj, Macromolecules, 34, 9189 (2001).   DOI   ScienceOn
7 D. Jarus, A. Hiltner, and E. Baer, Polymer, 43, 2401 (2002).   DOI   ScienceOn
8 R. A. Zoppi, S. D. Neves, and S. P. Nunes, Polymer, 41, 5461 (2000).   DOI   ScienceOn
9 K. E. Strawhecker and E. Manias, Chem. Mater., 12, 2943 (2000).   DOI   ScienceOn
10 N. Ogata, S. Kawakage, and T. Ogihara, J. Appl. Polym. Sci., 66, 573 (1999).
11 E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, and T. C. Chung, Chem. Mater., 13, 3516 (2001).   DOI   ScienceOn
12 I. K. Kim and J. H. Yeum, Polymer(Korea), 35, 553 (2011).
13 T. Srikhirin, A. Moet, and J. B. Lando, Polym. Adv. Tech., 9, 491 (1998).   DOI
14 J. J. Cha and J. H. Im, Polymer(Korea), 37, 507 (2013).
15 Y. Fukushima and S. Inagaki, Incl. Phenom., 5, 473 (1987).   DOI
16 E. P. Giannelis, Adv. Mater., 8, 29 (1996).   DOI
17 Y. S. Chol and I. J. Chung, Korean Chem. Eng., 46, 23, (2008).
18 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008).   DOI   ScienceOn
19 M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett., 8, 3498 (2008).   DOI   ScienceOn
20 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett., 8, 902 (2008).   DOI   ScienceOn
21 D. Cai and M. Song, J. Mater. Chem., 20, 7906 (2010).   DOI   ScienceOn
22 X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nature Nanotechnol., 3, 491 (2008).   DOI   ScienceOn
23 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 438, 201 (2005).   DOI   ScienceOn
24 S. Ansari and E. P. Giannelis, J. Polym. Sci., Part B: Polym. Phys., 47, 888 (2009).   DOI   ScienceOn
25 R. G. Sinclair, J. Macromol. Sci. Pure Appl. Chem., 33, 585 (1996).   DOI   ScienceOn
26 R. A. Jain, Biomaterials, 21, 2475 (2000).   DOI   ScienceOn
27 H. Urayama, T. Kanamori, and Y. Kimura, Macromol. Mater. Eng., 287, 116 (2002).   DOI
28 A. G. Mikos, M. D. Lyman, L. E. Freed, and R. Langer, Biomaterials, 15, 55 (1994).   DOI   ScienceOn
29 T. G. Park, S. Cohen, and R. Langer, Macromolecules, 25, 116, (1992).   DOI
30 J.-H. Chang, Y. U. An, D. H. Cho, and E. P. Giannelis, Polymer, 44, 3715 (2003).   DOI   ScienceOn
31 W. Hummers and R. Offman, J. Am. Chem. Soc., 80, 1339 (1958).   DOI
32 J.-H. Chang, S. J. Kim, and S. Im, Polymer, 45, 5171 (2004).   DOI   ScienceOn
33 G. Galgali, C. Ramesh, and A. Lele, Macromolecules, 34, 852 (2001).   DOI   ScienceOn
34 A. B. Morgan and J. W. Gilman, J. Appl. Polym. Sci., 87, 1329 (2003).   DOI   ScienceOn
35 M. S. Taylor, A. U. Daniels, K. P. Andriano, and J. Heller, J. Appl. Biomater., 5, 151 (1994).   DOI   ScienceOn
36 A. V. Raghu, Y. R. Lee, and H. M. Jeong, Macromol. Chem. Phys., 209, 2487 (2008).   DOI   ScienceOn
37 H. R. Frischer, L. H. Gielgens, and T. P. Koster, M. Acta Polym., 50, 122 (1999).   DOI
38 G. Perego, G. D. Cella, and C. Bastioli, J. Appl. Polym. Sci., 195, 1649 (1996).
39 J.-H. Chang, Y. U. An, and G. S. Sur, J. Polym. Sci., Part B: Polym. Phys., 41, 94 (2003).