• Title/Summary/Keyword: 위치 오차

Search Result 2,864, Processing Time 0.03 seconds

Relative Error Analysis for Measuring Value of Ground Resistance according to Position Variation of Potential Probe) (전위보조전극의 위치변화에 따른 접지저항 측정값의 상대오차분석)

  • Gil, Hyoung-Jun;Kim, Dong-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.96-102
    • /
    • 2009
  • In this paper, the effects of the position and the angle of the potential probes on the measurements of the ground resistance with the fall-of-potential method are described and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position and angle of auxiliary probes. In order to analyze the relative error for measuring value of ground resistance due to the position of the potential probe, ground resistance were measured in case that the distance of current probe was fixed at 50[m] and the distance of potential probe was located from l0[m] to 50[m]. Also, the potential probe was located at 30[$^{\circ}$], 45[$^{\circ}$], 60[$^{\circ}$], 90[$^{\circ}$] and 180[$^{\circ}$]. As a consequence, relative error decreased with increasing the distance of potential probe and decreasing the angle between current probe and potential probe. The results could be help to determine the position of potential probe when the ground resistance was measured at grounding system.

Study on Building Data Set Matching Considering Position Error (위치 오차를 고려한 건물 데이터 셋의 매칭에 관한 연구)

  • Kim, Ki-Rak;Huh, Yong;Yu, Ki-Yun
    • Spatial Information Research
    • /
    • v.19 no.2
    • /
    • pp.37-46
    • /
    • 2011
  • Recently in the field of GIS(Geographic Information System), data integration from various sources has become an important topic in order to use spatial data effectively. In general, the integration of spatial data is accomplished by navigating corresponding space object and combining the information interacting with each object. But it is very difficult to navigate an object which has correspondence with one in another dataset. Many matching methods have been studied for navigating spatial object. The purpose of this paper is development of method for searching correspondent spatial object considering local position error which is remained even after coordinate transform ation when two different building data sets integrated. To achieve this goal, we performed coordinate transformation and overlapped two data sets and generated blocks which have similar position error. We matched building objects within each block using similarity and ICP algorithm. Finally, we tested this method in the aspect of applicability.

Location Estimation Algorithm with TDOA Scheme in Real Time Location System (RTLS에서 TDOA 기법을 이용한 위치추정 알고리즘)

  • Jeong, Seung-Hee;Kang, Chul-Gyu;Oh, Chang-Heon;Lim, Choon-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.459-462
    • /
    • 2005
  • In this paper, we investigate the high precision location estimation algorithm in 2.45GHz band RTLS with multiple tags. The location is estimated in LOS environments, 300m ${\times}$ 300m area, and 2D coordinates adopting a TDOA scheme which is not necessitate the transmission time of tags. We evaluate the average estimation error in distance assuming that tags are randomly distributed and the readers(3${\sim}$8) are uniformly(equal space) placed in test area. In results, average estimation error is 3.12m and 1.47m at reader numbers of 4 and 8, respectively. Minimum estimation error is obtained when the accumulated receiving signal from a tag is 3 or 4 regardless of available reader numbers. The error is less than 3m, satisfies the specification of RTLS.

  • PDF

Stabilization Control of the Inverted Pendulum System by Adaptive Fuzzy Inference Techniques (적응 퍼지 추론 기법을 이용한 도립 진자 시스템의 안정화 제어에 관한 연구)

  • 이준탁;김태우;최우진
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.174-179
    • /
    • 1995
  • 본 논문데서는 부하외란이나 시스템 내부 파라미터의 변동시에 적응력이 저하되는 종래의 PI제어기와, 정상상태 잔류편차가 존재하는 퍼지 제어기의 단점을 극복하기 위한 적 응 퍼지 제어 기법을 제안하였고, 이를 도립 진자 시스템에 적용하였다. 운송차의 위치 및 진자 각도의 오차, 오차의 변화량에 따라 퍼지 추론을 행하여 PI 제어기의 가중치를 결정하 는 구조로, P제어기는 운송차 및 진자의 오차가 과도 상태에서의 영역에서 사용되어 속응성 과 고정도의 특성을 얻는다. 1제어기는 정상상태에서의 정도 향상에 이용되었다. 특히, 제안 하는 적응 퍼지 제어기는 운송차의 위치 오차에 대한 PI 동작과, 진자의 각도 오차에 대한 PI 동작을 각각 퍼지 추론에 의해 부드럽게 전환함으로서 고유 불안정의 시스템인 도립 진 자 시스템의 안정화 제어에 적용하였다.

  • PDF

Positional Accuracy Analysis of Permanent GPS Sites Using Precise Point Positioning (정밀절대측위를 이용한 상시관측소 위치정확도 분석)

  • Kang, Joon-Mook;Lee, Yong-Wook;Kim, Min-Gyu;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.529-536
    • /
    • 2008
  • Researches about 3-D Positioning system using GPS were carried out many-sided by national organs, laboratories, the worlds of science. And most of researches were development of relative positioning algorithm and its applications. Relative positioning has a merit, which can eliminate error in received signals. But its error increase due to distance of baseline. GPS absolute positioning is a method that decides the position independently by the signals from the GPS satellites which are received by a receiver at a certain position. And it is necessary to correct various kinds of error(clock error, effect of ionosphere and troposphere, multi-path etc.). In this study, results of PPP(Precise Point Positioning) used Bernese GPS software was compared with notified coordinates by the NGII(National Geographic Information Institute) in order to analyze the positional accuracy of permanent GPS sites. And the results were compared with results of AUSPOS - Online GPS Processing Service for comparison with relative positioning.

DESIGN OF AN IMAGE MOTION COMPENSATION (IMC) ALGORITHM FOR IMAGE REGISTRATION OF THE COMMUNICATION, OCEAN, METEOROLOGICAL SATELLITE (COMS)-1 (통신해양기상위성 1호기의 영상위치유지를 위한 영상오차보상(IMC) 알고리즘 설계)

  • Jung Taek-Seo;Park Sang-Young;Lee Un-Seob;Ju Gwang-Hyeok;Yang Koon-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.1
    • /
    • pp.29-38
    • /
    • 2006
  • This paper presents an Image Motion Compensation (IMC) algorithm for the Korea's Communication, Ocean, and Meteorological Satellite (COMS)-1. An IMC algorithm is a priority component of image registration in Image Navigation and Registration (INR) system to locate and register radiometric image data. Due to various perturbations, a satellite has orbit and attitude errors with respect to a reference motion. These errors cause depointing of the imager aiming direction, and in consequence cause image distortions. To correct the depointing of the imager aiming direction, a compensation algorithm is designed by adapting different equations from those used for the GOES satellites. The capability of the algorithm is compared with that of existing algorithm applied to the GOES's INR system. The algorithm developed in this paper improves pointing accuracy by 40%, and efficiently compensates the depointings of the imager aiming direction.

Methodology of Calibration for Falling Objects Accident-Risk-Zone Approach Detection Algorithm at Port Considering GPS Errors (GPS 오차를 고려한 항만 내 낙하물 사고위험 알고리즘 보정 방법론 개발)

  • Son, Seung-Oh;Kim, Hyeonseo;Park, Juneyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.61-73
    • /
    • 2020
  • Real-time location-sensing technology using location information collected from IoT devices is being applied for safety management purposes in many industries, such as ports. On the other hand, positional error is always present owing to the characteristics of GPS. Therefore, accident-risk detection algorithms must consider positional error. This paper proposes an methodology of calibration for falling object accident-risk-zone approach detection algorithm considering GPS errors. A probability density function was estimated, with positional error data collected from IoT devices as a probability variable. As a result of the verification, the algorithm showed a detection accuracy of 93% and 77%. Overall, the analysis results derived according to the GPS error level will be an important criterion for upgrading algorithms and real-time risk managements in the future.

Analysis of Position Error Variance on GNSS Augmentation System due to Non-Common Measurement Error (비공통오차 증가로 인한 위성항법보강시스템 위치 오차 분산 변화 분석)

  • Jun, Hyang-Sig;Ahn, Jong-Sun;Yeom, Chan-Hong;Lee, Young-Jae;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.197-200
    • /
    • 2008
  • A GNSS augmentation system provides precise position information using corrected GNSS pseudorange measurements. Common bias errors are corrected by PRC (Pseudorange Correction) between reference stations and a rover. However non-common errors (Ionospheric and Tropospheric noise error) are not corrected. Using position error variance this paper analyzes non-common errors (noise errors) of ionosphere and troposphere wet vapor.

  • PDF

Improvement of Target Position Estimation Accuracy for UAV using Kalman Filter (칼만필터를 이용한 무인기의 표적위치 추정 정확도 개선)

  • Oh, Soo-Hun;Kim, Tae-Sik
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.237-244
    • /
    • 2007
  • Estimation of target position is one of the main functions of surveillance UAVs, and is being used to various purposes but generally noisy target position is estimated due to the existence of random measurement errors. In this report, a method of diminishing target position estimation error by calculating target position using Kalman Filtered optimum values such as position, attitude of UAV and sight vector of optical instrument, is proposed.

  • PDF

RFID Localization using variable Transmission-signal Power over Uneven Tag Floor (불균일 Tag Floor 상에서의 전송신호 전력 조절을 통한 RFID 위치추정)

  • Lee, Je-Won;Park, Young-Su;Kim, Dae-Hyun;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1802_1803
    • /
    • 2009
  • 위치추정은 현재 이동로봇 분야에서 매우 중요하게 다루어지는 문제이다. RFID 위치추정 시스템은 저렴하고, 오차누적의 위험이 없고, map과 같은 사전정보의 제약이 없기에 범용적으로 사용될 수 있다. 하지만 RFID 위치추정에 있어, tag들의 서로 다른 인식거리 차이는 위치추정의 오차를 증폭시키는 역할을 한다. 따라서 이 논문에서는 이를 극복하기 위해 tag들의 인식거리 정보를 활용하여 위치추정을 수행한다. 또한 보다 정확한 위치추정을 위해, 송신신호 전력조절을 통하여, 인식거리를 조절하는 방법을 사용한다. 이들의 성능은 simulation을 통해서 확인하였다.

  • PDF