DOI QR코드

DOI QR Code

Relative Error Analysis for Measuring Value of Ground Resistance according to Position Variation of Potential Probe)

전위보조전극의 위치변화에 따른 접지저항 측정값의 상대오차분석

  • 길형준 (한국전기안전공사 전기안전연구원) ;
  • 김동우 (한국전기안전공사 전기안전연구원)
  • Published : 2009.02.28

Abstract

In this paper, the effects of the position and the angle of the potential probes on the measurements of the ground resistance with the fall-of-potential method are described and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position and angle of auxiliary probes. In order to analyze the relative error for measuring value of ground resistance due to the position of the potential probe, ground resistance were measured in case that the distance of current probe was fixed at 50[m] and the distance of potential probe was located from l0[m] to 50[m]. Also, the potential probe was located at 30[$^{\circ}$], 45[$^{\circ}$], 60[$^{\circ}$], 90[$^{\circ}$] and 180[$^{\circ}$]. As a consequence, relative error decreased with increasing the distance of potential probe and decreasing the angle between current probe and potential probe. The results could be help to determine the position of potential probe when the ground resistance was measured at grounding system.

본 논문에서는 전위강하법을 이용한 접지저항 측정시 전위보조전극의 위치 및 각도의 영향에 대하여 기술하였으며, 측정시 오차를 최소화하는 기법을 제안하였다. 전위강하법은 이론적으로 전위와 전류의 측정원리에 근간을 두고 있으며 측정오차는 주로 보조전극의 위치와 각도에 기인한다. 전위보조전각의 위치에 의한 접지저항 측정값의 상대오차를 분석하기 위해 전류보조전극의 거리를 50[m]로 고정시키고 전위보조전극의 거리를 10[m]에서 50[m]까지 변화시키며 접지저항을 측정하였고 또한 전위보조전극과 전류보조전극 사이의 각도를 30[$^{\circ}$], 45[$^{\circ}$], 60[$^{\circ}$], 90[$^{\circ}$], 180[$^{\circ}$]로 변화시키며 측정하였다. 결과적으로 전위보조전극의 거리 증가 및 전류보조전극과 전위보조전극 사이의 각도가 감소할수록 상대오차가 작게 나타났다. 본 실험결과는 접지시스템의 접지저항을 측정할 때 전위보조전극의 위치를 결정하는데 활용될 수 있다.

Keywords

References

  1. 이복희, 이승칠, "접지의 핵심기초기술", 의제, pp.64-69, 1999
  2. 이복희, 엄주홍, "전위강하법에 의한 접지저항측정에 미 치는 전류보조전극의 영향", 한국조명.전기설비학회, Vol.14, No.6, pp.69~77, 2000
  3. 길형준, 최충석, 이복희, "개별 접지전극과 연접된 접지전극의 전위상승 분포 비교 연구", Vol.22, No.2, pp.57~62, 2008 https://doi.org/10.5207/JIEIE.2008.22.2.057
  4. 길형준, 김동우, 김동욱, 이기연, 김향곤, "현장조사에 의한 접지시스템의 전기안전성 평가", 한국조명.전기설비학회 춘계학술대회, pp.361-364, 2008
  5. C. Wang, T. Takasima, T. Sakuta and Y. Tsubota, "Grounding Resistance Measurement Using Fall-of-PotentialMethod with Potential Probe Located in Opposite Direction to the Current Probe," IEEE Trans. Power Delivery, vol.13, no.4, pp.1128-1135, Oct. 1998 https://doi.org/10.1109/61.714472
  6. R. Zeng, J. He and Z. Guan, "Novel Measurement System for Grounding Impedance of Substation," IEEE Trans. Power Delivery, vol.21, no.2, pp.719~725, Apr. 2006 https://doi.org/10.1109/TPWRD.2006.870980
  7. K. M. Michaels, "Earth Ground Resistance Testing for Low-Voltage Power Systems," IEEE Trans. Industry Applications, vol.31, no.1, pp.206-213, Jan./Feb. 1995 https://doi.org/10.1109/28.363027
  8. V. Dimcev, B. Handjiski, P. Vrangalov and R. Sekerinska, "Impedance Measurement of Grounding Systems with Alternative Fall-of-Potential Method," IEEE Industry Applications Conference, vol.5, pp.3215-3219, 2000 https://doi.org/10.1109/IAS.2000.882627
  9. IEEE Std 81-1983, "IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System", pp.19-23, 1983
  10. TTAS.KO-04.0026/R1, "Technical Standard for the Measurements of Grounding Resistance," Telecommunications Tech. Ass., 2007

Cited by

  1. Development of LED Lamp which using Transparent Plastic Substrates vol.24, pp.5, 2010, https://doi.org/10.5207/JIEIE.2010.24.5.001
  2. Characteristics for Ground Impedance according to Distance of Current Probe and Frequency vol.24, pp.5, 2010, https://doi.org/10.5207/JIEIE.2010.24.5.122