• Title/Summary/Keyword: 위치획득 알고리즘

Search Result 314, Processing Time 0.029 seconds

A Preliminary Development of Real-Time Hardware-in-the-Loop Simulation Testbed for the Satellite Formation Flying Navigation and Orbit Control (편대비행위성의 항법 및 궤도제어를 위한 실시간 Hardware-In-the-Loop 시뮬레이션 테스트베드 초기 설계)

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.99-110
    • /
    • 2009
  • The main purpose of the current research is to developments a real-time Hardware In-the-Loop (HIL) simulation testbed for the satellite formation flying navigation and orbit control. The HIL simulation testbed is integrated for demonstrations and evaluations of navigation and orbit control algorithms. The HIL simulation testbed is composed of Environment computer, GPS simulator, Flight computer and Visualization computer system. GPS measurements are generated by a SPIRENT GSS6560 multi-channel RF simulator to produce pseudorange, carrier phase measurements. The measurement date are transferred to Satrec Intiative space borne GPS receiver and exchanged by the flight computer system and subsequently processed in a navigation filter to generate relative or absolute state estimates. These results are fed into control algorithm to generate orbit controls required to maintain the formation. These maneuvers are informed to environment computer system to build a close simulation loop. In this paper, the overall design of the HIL simulation testbed for the satellite formation flying navigation and control is presented. Each component of the testbed is then described. Finally, a LEO formation navigation and control simulation is demonstrated by using virtual scenario.

A Blind Watermarking Algorithm using CABAC for H.264/AVC Main Profile (H.264/AVC Main Profile을 위한 CABAC-기반의 블라인드 워터마킹 알고리즘)

  • Seo, Young-Ho;Choi, Hyun-Jun;Lee, Chang-Yeul;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.181-188
    • /
    • 2007
  • This paper proposed a watermark embedding/extracting method using CABAC(Context-based Adaptive Binary Arithmetic Coding) which is the entropy encoder for the main profile of MPEG-4 Part 10 H.264/AVC. This algorithm selects the blocks and the coefficients in a block on the bases of the contexts extracted from the relationship to the adjacent blocks and coefficients. A watermark bit is embedded without any modification of coefficient or with replacing the LSB(Least Significant Bit) of the coefficient with a watermark bit by considering both the absolute value of the selected coefficient and the watermark bit. Therefore, it makes it hard for an attacker to find out the watermarked locations. By selecting a few coefficients near the DC coefficient according to the contexts, this algorithm satisfies the robustness requirement. From the results from experiments with various kinds and various strengths of attacks the maximum error ratio of the extracted watermark was 5.02% in maximum, which makes certain that the proposed algorithm has very high level of robustness. Because it embeds the watermark during the context modeling and binarization process of CABAC, the additional amount of calculation for locating and selecting the coefficients to embed watermark is very small. Consequently, it is highly expected that it is very useful in the application area that the video must be compressed right after acquisition.

A Study on the Determination of Exterior Orientation of SPOT Imagery (SPOT 위성영상(衛星映像)의 외부표정요소(外部標定要素) 결정(決定)에 관한 연구(硏究))

  • Yeu, Bock Mo;Cho, Gi Sung;Kwon, Hyon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.77-85
    • /
    • 1990
  • The application of remote sensing in small scale mapping has recently been widened to various fields such as information analysis of landuse, environmental conservation and natural resources. SPOT imagery, in particular, offers data which can be processed for 3-dimensional point determination. This is made possible by its high resolution, appropriate swatch width/altitude ratio and stereo imaging capabilities. This study aims to develop a suitable polymonial and an algorithm in the determination of exterior orientation which is essential in the 3-dimensional point determination of SPOT imgery. An algorithm is presented in this study to determine the exterior orientation of a preprocessed level lB film of the satellite image. It was found that a polynominal of 15 parameters is the best fit polynominal for exterior orientation determination, where 1st order line function is used for positon ($X_o$, $Y_o$, $Z_o$) and 2nd order line function is used for orientation (${\kappa}_o$, ${\phi}_o$, ${\omega}_o$).

  • PDF

Relative Navigation Study Using Multiple PSD Sensor and Beacon Module Based on Kalman Filter (복수 PSD와 비콘을 이용한 칼만필터 기반 상대항법에 대한 연구)

  • Song, Jeonggyu;Jeong, Junho;Yang, Seungwon;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.219-229
    • /
    • 2018
  • This paper proposes Kalman Filter-based relative navigation algorithms for proximity tasks such as rendezvous/docking/cluster-operation of spacecraft using PSD Sensors and Infrared Beacon Modules. Numerical simulations are performed for comparative analysis of the performance of each relative-navigation technique. Based on the operation principle and optical modeling of the PSD Sensor and the Infrared Beacon Module used in the relative navigation algorithm, a measurement model for the Kalman filter is constructed. The Extended Kalman Filter(EKF) and the Unscented Kalman Filter(UKF) are used as probabilistic relative navigation based on measurement fusion to utilize kinematics and dynamics information on translational and rotation motions of satellites. Relative position and relative attitude estimation performance of two filters is compared. Especially, through the simulation of various scenarios, performance changes are also investigated depending on the number of PSD Sensors and IR Beacons in target and chaser satellites.

Real-Time Interested Pedestrian Detection and Tracking in Controllable Camera Environment (제어 가능한 카메라 환경에서 실시간 관심 보행자 검출 및 추적)

  • Lee, Byung-Sun;Rhee, Eun-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.293-297
    • /
    • 2007
  • This thesis suggests a new algorithm to detects multiple moving objects using a CMODE(Correct Multiple Object DEtection) method in the color images acquired in real-time and to track the interested pedestrian using motion and hue information. The multiple objects are detected, and then shaking trees or moving cars are removed using structural characteristics and shape information of the man , the interested pedestrian can be detected, The first similarity judgment for tracking an interested pedestrian is to use the distance between the previous interested pedestrian's centroid and the present pedestrian's centroid. For the area where the first similarity is detected, three feature points are calculated using k-mean algorithm, and the second similarity is judged and tracked using the average hue value for the $3{\times}3$ area of each feature point. The zooming of camera is adjusted to track an interested pedestrian at a long distance easily and the FOV(Field of View) of camera is adjusted in case the pedestrian is not situated in the fixed range of the screen. As a experiment results, comparing the suggested CMODE method with the labeling method, an average approach rate is one fourth of labeling method, and an average detecting time is faster three times than labeling method. Even in a complex background, such as the areas where trees are shaking or cars are moving, or the area of shadows, interested pedestrian detection is showed a high detection rate of average 96.5%. The tracking of an interested pedestrian is showed high tracking rate of average 95% using the information of situation and hue, and interested pedestrian can be tracked successively through a camera FOV and zooming adjustment.

  • PDF

Inspection System for The Metal Mask (Metal Mask 검사시스템)

  • 최경진;이용현;박종국
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.2
    • /
    • pp.1-9
    • /
    • 2003
  • We develop an experimental system to inspect a metal mask and, in this paper, introduce its inspection algorithm. This system is composed of an ASC(Area Scan Camera) and a belt type xy-table. The whole area of the metal mask is divided into several inspection blocks. The area of each block is equal to FOV(Field of View). For each block, the camera image is compared to the reference image. The reference image is made by gerber file. The rotation angle of the metal mask is calculated through the linear equation that is substituted two end points of horizontal boundary of a specific hole in a camera image. To calculate the position error caused by the belt type xy-table, HT(Hough-Transform) using distances among the holes in two images is used. The center of the reference image is moved as much as the calculated Position error to be coincided with the camera image. The information of holes in each image, such as centroid, size, width and height, are calculated through labeling. Whether a holes is mado correctly by laser machine or not, is judged by comparing the centroid and the size of hole in each image. Finally, we build the experimental system and apply this algorithm.

Development of a Cause Analysis Program to Risky Driving with Vision System (Vision 시스템을 이용한 위험운전 원인 분석 프로그램 개발에 관한 연구)

  • Oh, Ju-Taek;Lee, Sang-Yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.149-161
    • /
    • 2009
  • Electronic control systems of vehicle are rapidly developed to keep balance of a driver`s safety and the legal, social needs. The driver assistance systems are putted into practical use according to the cost drop in hardware and highly efficient sensor, etc. This study has developed a lane and vehicle detection program using CCD camera. The Risky Driving Analysis Program based on vision systems is developed by combining a risky driving detection algorithm formed in previous study with lane and vehicle detection program suggested in this study. Risky driving detection programs developed in this study with information coming from the vehicle moving data and lane data are useful in efficiently analyzing the cause and effect of risky driving behavior.

  • PDF

Head Pose Estimation Using Error Compensated Singular Value Decomposition for 3D Face Recognition (3차원 얼굴 인식을 위한 오류 보상 특이치 분해 기반 얼굴 포즈 추정)

  • 송환종;양욱일;손광훈
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.31-40
    • /
    • 2003
  • Most face recognition systems are based on 2D images and applied in many applications. However, it is difficult to recognize a face when the pose varies severely. Therefore, head pose estimation is an inevitable procedure to improve recognition rate when a face is not frontal. In this paper, we propose a novel head pose estimation algorithm for 3D face recognition. Given the 3D range image of an unknown face as an input, we automatically extract facial feature points based on the face curvature. We propose an Error Compensated Singular Value Decomposition (EC-SVD) method based on the extracted facial feature points. We obtain the initial rotation angle based on the SVD method, and perform a refinement procedure to compensate for remained errors. The proposed algorithm is performed by exploiting the extracted facial features in the normaized 3D face space. In addition, we propose a 3D nearest neighbor classifier in order to select face candidates for 3D face recognition. From simulation results, we proved the efficiency and validity of the proposed algorithm.

Sensor Fusion Docking System of Drone and Ground Vehicles Using Image Object Detection (영상 객체 검출을 이용한 드론과 지상로봇의 센서 융합 도킹 시스템)

  • Beck, Jong-Hwan;Park, Hee-Su;Oh, Se-Ryeong;Shin, Ji-Hun;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.217-222
    • /
    • 2017
  • Recent studies for working robot in dangerous places have been carried out on large unmanned ground vehicles or 4-legged robots with the advantage of long working time, but it is difficult to apply in practical dangerous fields which require the real-time system with high locomotion and capability of delicate working. This research shows the collaborated docking system of drone and ground vehicles which combines image processing algorithm and laser sensors for effective detection of docking markers, and is finally capable of moving a long distance and doing very delicate works. We proposed the docking system of drone and ground vehicles with sensor fusion which also suggests two template matching methods appropriate for this application. The system showed 95% docking success rate in 50 docking attempts.

Effective Marker Placement Method By De Bruijn Sequence for Corresponding Points Matching (드 브루인 수열을 이용한 효과적인 위치 인식 마커 구성)

  • Park, Gyeong-Mi;Kim, Sung-Hwan;Cho, Hwan-Gue
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.9-20
    • /
    • 2012
  • In computer vision, it is very important to obtain reliable corresponding feature points. However, we know it is not easy to find the corresponding feature points exactly considering by scaling, lighting, viewpoints, etc. Lots of SIFT methods applies the invariant to image scale and rotation and change in illumination, which is due to the feature vector extracted from corners or edges of object. However, SIFT could not find feature points, if edges do not exist in the area when we extract feature points along edges. In this paper, we present a new placement method of marker to improve the performance of SIFT feature detection and matching between different view of an object or scene. The shape of the markers used in the proposed method is formed in a semicircle to detect dominant direction vector by SIFT algorithm depending on direction placement of marker. We applied De Bruijn sequence for the markers direction placement to improve the matching performance. The experimental results show that the proposed method is more accurate and effective comparing to the current method.