• Title/Summary/Keyword: 웨이블릿 변환 분석

Search Result 177, Processing Time 0.024 seconds

A Design and Implementation of Threshold-adjusted Em Codec (Threshold-adjusted EZW Codec의 설계와 구현)

  • Chae, Hui-Jung;Lee, Ho-Seok
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.57-66
    • /
    • 2002
  • In this paper, we propose a method for the improvement of EZW encoding algorithm. The EZW algorithm encodes wavelet coefficients using 4 symbols such as POS(POsitive), NEG(NEGative), IZ(Isolated Zero), and ZTR(ZeroTreeRoot) which are determined by the significance of wavelet coefficients. In this paper, we applied threshold to wavelet coefficients to improve the EZW algorithm. The coefficients below the threshold are adjusted to zero to generate more ZTR symbols in the encoding process. The overall EZW image compression system is constructed using run-length coding and arithmetic coding. The system shows remarkable results for various images. We finally present experimentation results.

Face recognition rate comparison using Principal Component Analysis in Wavelet compression image (Wavelet 압축 영상에서 PCA를 이용한 얼굴 인식률 비교)

  • 박장한;남궁재찬
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.5
    • /
    • pp.33-40
    • /
    • 2004
  • In this paper, we constructs face database by using wavelet comparison, and compare face recognition rate by using principle component analysis (Principal Component Analysis : PCA) algorithm. General face recognition method constructs database, and do face recognition by using normalized size. Proposed method changes image of normalized size (92${\times}$112) to 1 step, 2 step, 3 steps to wavelet compression and construct database. Input image did compression by wavelet and a face recognition experiment by PCA algorithm. As well as method that is proposed through an experiment reduces existing face image's information, the processing speed improved. Also, original image of proposed method showed recognition rate about 99.05%, 1 step 99.05%, 2 step 98.93%, 3 steps 98.54%, and showed that is possible to do face recognition constructing face database of large quantity.

Design and Implementation of a Diagnosis System for Nuclear Fuel Handling Machine (핵연료 교환기 진단시스템의 설계 및 개발)

  • Kang, Gwon-U;Kim, Byung-Ho;Eun, Seong-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.241-248
    • /
    • 2011
  • In this paper we proposed and implemented a diagnosis system to control nuclear fuel handling machine. The proposed system consists of data acquisition system, diagnosis algorithm and faults simulator. Since the test on real operation of the fuel handling machine is impossible, we evaluated the proposed system by diagnosis experiments using the faults simulator, with which test signals on abnormal states of the bearing ball and the inner race of the bearing are generated. The experiments showed that resulting diagnosis analysis are consistent with the theoretical expectations.

A Wavelet-based Profile Classification using Support Vector Machine (SVM을 이용한 웨이블릿기반 프로파일분류에 관한 연구)

  • Kim, Seong-Jun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.3-6
    • /
    • 2008
  • 베어링은 각종 설비에서 활용하는 중요한 기계요소 중 하나이다. 설비고장의 상당수는 베어링의 결함이나 파손에 기인하고 있다. 따라서 베어링에 대한 온라인모니터링기술은 설비의 정지를 예방하고 손실을 줄이는 데 필수적이다. 본 논문은 진동신호를 이용하여 베어링의 상태를 예측하기 위한 온라인모니터링에 대해 연구한다. 프로파일로 주어지는 진동신호는 이산웨이블릿변환을 통해 분석되고, 분해수준별 웨이블릿계수로부터 얻은 통계적 특징 중 유의한 것을 선별하고자 분산분석 (ANOVA)을 이용한다. 선별된 특징벡터는 Support Vector Machine (SVM)의 입력이 되는 데, 본 논문에서는 다중클래스 분류문제를 다루기 위한 계층적 SVM 네트워크를 제안한다.

  • PDF

Defect Detection of Flat Panel Display Using Wavelet Transform (웨이블릿 변환을 이용한 FPD 결함 검출)

  • Kim, Sang-Ji;Lee, Youn-Ju;Yoon, Jeong-Ho;You, Hun;Lee, Byung-Gook;Lee, Joon-Jae
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.10 no.1
    • /
    • pp.47-60
    • /
    • 2006
  • Due to the uneven illumination of FPD panel surface, it is difficult to detect the defects. The paper proposes a method to find the uneven illumination compensation using wavelets, which are done based on multi-resolution structure. The first step is to decompose the image into multi-resolution levels. Second, elimination of lowest smooth sub-image with highest frequency band removes the high frequency noise and low varying illumination. In particular, the main algorithm was implemented by lifting scheme for realtime inline process.

  • PDF

3D Face Recognition using Wavelet Transform Based on Fuzzy Clustering Algorithm (펴지 군집화 알고리즘 기반의 웨이블릿 변환을 이용한 3차원 얼굴 인식)

  • Lee, Yeung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1501-1514
    • /
    • 2008
  • The face shape extracted by the depth values has different appearance as the most important facial information. The face images decomposed into frequency subband are signified personal features in detail. In this paper, we develop a method for recognizing the range face images by multiple frequency domains for each depth image using the modified fuzzy c-mean algorithm. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area. And the second step takes into consideration of the orientated frontal posture to normalize. Multiple contour line areas which have a different shape for each person are extracted by the depth threshold values from the reference point, nose tip. And then, the frequency component extracted from the wavelet subband can be adopted as feature information for the authentication problems. The third step of approach concerns the application of eigenface to reduce the dimension. And the linear discriminant analysis (LDA) method to improve the classification ability between the similar features is adapted. In the last step, the individual classifiers using the modified fuzzy c-mean method based on the K-NN to initialize the membership degree is explained for extracted coefficient at each resolution level. In the experimental results, using the depth threshold value 60 (DT60) showed the highest recognition rate among the extracted regions, and the proposed classification method achieved 98.3% recognition rate, incase of fuzzy cluster.

  • PDF

A Hybrid System of Wavelet Transformations and Neural Networks Using Genetic Algorithms: Applying to Chaotic Financial Markets (유전자 알고리즘을 이용한 웨이블릿분석 및 인공신경망기법의 통합모형구축)

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.271-280
    • /
    • 1999
  • 인공신경망을 시계열예측에 적용하는 경우에 고려되어야 할 문제중, 특히 모형에 적합한 입력변수의 생성이 중요시되고 있는데, 이러한 분야는 인공신경망의 모형생성과정에서 입력변수에 대한 전처리기법으로써 다양하게 제시되어 왔다. 가장 최근의 입력변수 전처리기법으로써 제시되고 있는 신호처리기법은 전통적 주기분할처리방법인 푸리에변환기법(Fourier transforms)을 비롯하여 이를 확장시킨 개념인 웨이블릿변환기법(wavelet transforms) 등으로 대별될 수 있다. 이는 기본적으로 시계열이 다수의 주기(cycle)들로 구성된 상이한 시계열들의 집합이라는 가정에서 출발하고 있다. 전통적으로 이러한 시계열은 전기 또는 전자공학에서 주파수영역분할, 즉 고주파 및 저주파수를 분할하기 위한 기법에 적용되어 왔다. 그러나, 최근에는 이러한 연구가 다양한 분야에 활발하게 응용되기 시작하였으며, 그 중의 대표적인 예가 바로 경영분야의 재무시계열에 대한 분석이다. 전통적으로 재무시계열은 장, 단기의사결정을 가진 시장참여자들간의 거래특성이 시계열에 각기 달리 가격으로 반영되기 때문에 이러한 상이한 집단들의 고요한 거래움직임으로 말미암아 예를 들어, 주식시장이 프랙탈구조를 가지고 있다고 보기도 한다. 이처럼 재무시계열은 다양한 사회현상의 집합체라고 볼 수 있으며, 그만큼 예측모형을 구축하는데 어려움이 따른다. 본 연구는 이러한 시계열의 주기적 특성에 기반을 둔 신호처리분석으로서 기존의 시계열로부터 노이즈를 줄여 주면서 보다 의미있는 정보로 변환시켜줄 수 있는 웨이블릿분석 방법론을 새로운 필터링기법으로 사용하여 현재 많은 연구가 진행되고 있는 인공신경망의 모형결합을 통해 기존연구과는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서는 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이브릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다. 기존의 주기분할방법론은 모형개발자입장에서 여러 가지 통계기준치중에서 최적의 기준치를 합리적으로 선택해야 하는 문제가 추가적으로 발생하며, 본 연구에서는 이상의 제반 문제들을 개선시키기 위해 통합방법론으로서 기존의 인공신경망모형을 구조적으로 확장시켰다. 이 모형에서 기존의 입력층 이전단계에 새로운 층이 정의된다. 이렇게 해서 생성된 새로운 통합모형은 기존모형에서 생성되는 기본적인 학습파라미터와 더불어, 본 연구에서 새롭게 제시된 주기분할층의 파라미터들이 모형의 학습성과를 높이기 위해 함께 고려된다. 한편, 이러한 학습과정에서 추가적으로 고려해야 할 파라미터 갯수가 증가함에 따라서, 본 모델의 학습성과가 local minimum에 빠지는 문제점이 발생될 수 있다. 즉, 웨이블릿분석과 인공신경망모형을 모두 전역적으로 최적화시켜야 하는 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해서, 최근 local minimum의 가능성을 최소화하여 전역적인 학습성과를 높여 주는 인공지능기법으로서 유전자알고리즘기법을 본 연구이 통합모델에 반영하였다. 이에 대한 실증사례 분석결과는 일일 환율예측문제를 적용하였을 경우, 기존의 방법론보다 더 나운 예측성과를 타나내었다.

  • PDF

Features Extraction for Classifying Parkinson's Disease Based on Gait Analysis (걸음걸이 분석 기반의 파킨슨병 분류를 위한 특징 추출)

  • Lee, Sang-Hong;Lim, Joon-S.;Shin, Dong-Kun
    • Journal of Internet Computing and Services
    • /
    • v.11 no.6
    • /
    • pp.13-20
    • /
    • 2010
  • This paper presents a measure to classify healthy persons and Parkinson disease patients from the foot pressure of healthy persons and that of Parkinson disease patients using gait analysis based characteristics extraction and Neural Network with Weighted Fuzzy Membership Functions (NEWFM). To extract the inputs to be used in NEWFM, in the first step, the foot pressure data provided by the PhysioBank and changes in foot pressure over time were used to extract four characteristics respectively. In the second step, wavelet coefficients were extracted from the eight characteristics extracted from the previous stage using the wavelet transform (WT). In the final step, 40 inputs were extracted from the extracted wavelet coefficients using statistical methods including the frequency distribution of signals and the amount of variability in the frequency distribution. NEWFM showed high accuracy in the case of the characteristics obtained using differences between the left foot pressure and the right food pressure and in the case of the characteristics obtained using differences in changes in foot pressure over time when healthy persons and Parkinson disease patients were classified by extracting eight characteristics from foot pressure data. Based on these results, the fact that differences between the left and right foot pressures of Parkinson disease patients who show a characteristic of dragging their feet in gaits were relatively smaller than those of healthy persons could be identified through this experiment.

Adaptive Wavelet Transform for Hologram Compression (홀로그램 압축을 위한 적응적 웨이블릿 변환)

  • Kim, Jin-Kyum;Oh, Kwan-Jung;Kim, Jin-Woong;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.143-154
    • /
    • 2021
  • In this paper, we propose a method of compressing digital hologram standardized data provided by JPEG Pleno. In numerical reconstruction of digital holograms, the addition of random phases for visualization reduces speckle noise due to interference and doubles the compression efficiency of holograms. Holograms are composed of completely complex floating point data, and due to ultra-high resolution and speckle noise, it is essential to develop a compression technology tailored to the characteristics of the hologram. First, frequency characteristics of hologram data are analyzed using various wavelet filters to analyze energy concentration according to filter types. Second, we introduce the subband selection algorithm using energy concentration. Finally, the JPEG2000, SPIHT, H.264 results using the Daubechies 9/7 wavelet filter of JPEG2000 and the proposed method are used to compress and restore, and the efficiency is analyzed through quantitative quality evaluation compared to the compression rate.

Performance Comparisons of Wavelet Based T2-Test and Neural Network in Monitoring Process Profiles (공정프로파일 모니터링에서 웨이블릿기 반 T2-검정과 신경회로망의 성능비교)

  • Kim, Seong-Jun;Choi, Deok-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.737-745
    • /
    • 2008
  • Recent developments of process and measurement technology bring much interest to the online monitoring of process operations such as milling, grinding, broaching, etc. The objective of online monitoring systems is to detect process changes as early as possible. This is helpful in protecting facilities against unexpected failures and then preventing unnecessary loss. This paper investigates, when the process monitoring data are obtained as a profile, the monitoring performances of a statistical $T^2$-statistic and a feedforward neural network by using a wavelet transform. Numerical experiments using cutting force data presented by Axinte show that the proposed wavelet based $T^2$-test has an acceptable power in detecting profile changes. However, its operating characteristic is very sensitive to autocorrelation. On the contrary, compared with $T^2$-test, the neural network has more stable performance in the presence of autocorrelation. This indicates that an adaptive feature to analyze noises should be incorporated into the wavelet based $T^2$-test.